首页 > 范文大全 > 正文

白细胞介素18和白细胞介素12对胆固醇流出的影响

开篇:润墨网以专业的文秘视角,为您筛选了一篇白细胞介素18和白细胞介素12对胆固醇流出的影响范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

【摘要】目的 观察IL-18和IL-12对THP-1巨噬细胞源性泡沫细胞ATP结合盒转运体A1(ABCA1)表达和胆固醇流出的影响,并探讨两者的协同效应及其调节ABCA1介导的胆固醇流出的相关机制。方法 THP-1巨噬细胞源性泡沫细胞经不同浓度IL-18(0,2,20,200 ng/ml)或IL-12(0,0.2,2,20 ng/ml)处理或者用2ng/ml IL-12和20 ng/ml IL-18共处理不同时间(0,6,12,24h);运用液体闪烁计数器检测细胞内胆固醇流出,高效液相色谱分析细胞内总胆固醇、游离胆固醇和胆固醇酯含量, 实时荧光定量PCR检测ABCA1 mRNA表达情况。结果 IL-18和IL-12单独处理THP-1巨噬细胞源性泡沫细胞并不明显影响细胞总胆固醇、游离胆固醇、胆固醇酯含量及细胞内胆固醇流出,但IL-12预处理或IL-18/IL-12共处理后呈浓度和时间依赖性抑制ABCA1 mRNA及蛋白质的表达。结论 IL-18/IL-12共刺激下调THP-1巨噬细胞源性泡沫细胞ABCA1的表达和细胞内胆固醇流出,促进细胞内脂质蓄积。

【关键词】三磷酸腺苷结合盒转运体A1 IL-18 IL-12 胆固醇流出

中图分类号:R34文献标识码:B文章编号:1005-0515(2011)10-009-03

Influence of IL-18 and IL-12 on Cholesterol efflux

JIANG Hailu1 LI Tong2

(1. Cardiovascular Institute of Nanhua UniversityHunan Hengyang 421001 ;2. Shenzhen Second People’s HospitalGuangdong Shenzhen 518036)

【Abstract】Objective IL-18 and IL-12, mainly produced by activated macrophages, are multifunctional cytokines which have been found to be excessively expressed in inflammatory atherosclerosis lesions.This study was to investigate the changes of cholesterol efflux, ATP-binding cassette transporter A1 (ABCA1) mRNA and protein expression in THP-1 macrophage derived foam cells after treated by IL-18, IL-12, or both, and to discover the combined effects and mechanisms of IL-18 and IL-12 on the down-regulation of ABCA1 in foam cells. Conclusions These findings suggest that combined treatment with IL-18 and IL-12 can down-regulate the expression of ABCA1 mRNA and protein, promote the accumulation of lipid and decrease cellular cholesterol efflux in THP-1 macrophage derived foam cells.

【Keywords】ATP-binding cassette transporter A1 IL-18R IL-12 Nucleus factor-κB Cholesterol efflux

白细胞介素18(IL-18)和白细胞介素12(IL-12)是具有多种生物学功能的炎症因子,近来发现两者在动脉粥样硬化(As)斑块中过量表达。大量流行病学调查证实,血清IL-18水平与心血管疾病的风险呈正相关,提示IL-18介导了人体As病变的发生发展[1-3]。IL-12是一种与IL-18具有类似功能的炎性细胞因子,在As斑块中,IL- 12与IL-18共表达[4]。本研究观察IL-18及IL- 12作用下ABCA1表达及胆固醇流出的变化,为明确炎症与RCT的关系提供新的理论依据。

1 资料与方法

1.1 细胞培养

THP-1细胞生长于含10%新生小牛血清的RPMI-1640培养液中,于37℃、5% CO2培养箱中静置培养。培养液中加10 mmol/L的HEPES、1.0×105μ/L的青霉素和100 mg/L的链霉素,取对数生长期细胞进行实验。在每次实验前用160 nmol/L的佛波酯诱导THP-1细胞24 h,使其贴壁并转化为巨噬细胞。

1.2 胆固醇流出实验

胆固醇流出检测按本实验室的常规方法进行,THP-1细胞用0.2μCi/ml[3H]胆固醇在含有10%小牛血清RPMI-1640培养液共同孵育待细胞长至85%时,用PBS液洗涤细胞,置含脂蛋白的无血清RPMI-1640培养液中培养24小时。PBS液洗涤细胞,闪烁液裂解细胞后,用闪烁计数法检测培养液和细胞中的[3H]胆固醇。胆固醇流出率用培养液中CPM除以总CPM(培养液CPM+细胞CPM),再乘以100%来表示。

1.3 高效液相色谱分析

待细胞处理结束后,弃培养基,PBS洗3遍,加入细胞裂解液200μl,反复冻融3次裂解细胞,BCA法定量蛋白后,7.2%三氯乙酸沉淀蛋白,800×g离心10min,取上清进行胆固醇检测,以豆甾醇为内标。取100μl上清液,加入8.9mol/L氢氧化钾溶液200μl,水解胆固醇酯后为细胞内总胆固醇检测样品。各样品分别与内标液混匀,用正己烷和无水乙醇抽提后,1.5mol/L的三氧化铬进行氧化衍生并真空干燥,100μl 乙晴-异丙醇(80:20)溶解样品,上样于高效液相色谱仪。采用C-18柱,柱温4℃,流速1mL/min,250nm紫外光检测,胆固醇以峰面积定量,内标校准,以mg/g细胞蛋白为单位。

1.4 细胞白的提取

弃去培养基,用冰浴PBS(含PMSF)洗涤细胞三次,用细胞刮子从培养瓶壁上刮落细胞后收集到离心管中,1000转离心5分钟,去上清液,加1ml冰浴PBS(含PMSF),洗涤沉淀,并将细胞移至Ep管,4℃ 14000转离心5min,弃上清,加入400μl冰冻的缓冲液A(10mM Hepes,1.5mM Mgcl2,10mM Kcl,1mM DTT,0.5%Np-40,100μg/ml PMSF)将细胞重悬,用移液枪将匀浆吹吸15-20次,冰上静置15min后。4℃ 14000转离心20sec,沉淀用冰浴缓冲液A洗一次,用不含Np-40的缓冲液A洗一次,同上方法离心,沉淀重新悬浮在0.5倍体积的冰浴缓冲液C(20mM Hepes,1.5mM Mgcl2,420mM Nacl,1mM DTT,0.2mM EDTA,100μg/ml PMSF)中。样品用旋涡振荡仪,振荡20分钟,14000g离心20秒,上清含细胞核提取物,放置于新的Ep管,加入等体积的冰浴缓冲液D(20mM Hepes(pH7.9), 100mM Kcl, 20%甘油, 1mM DTT, 0.2mM EDTA, 100μg/ml PMSF),立即冰冻-80℃保存。使用时,样本与SDS缓冲液一起煮沸后,-20℃ 保存备用。

1.5 统计学分析

实验所得数据采用均数±标准差(x±s)表示。用SPSS 12.0进行统计处理,组间比较采用方差分析及t检验, 以P<0.05判定差异的显著性。

2 结果

2.1 IL-18对THP-1巨噬细胞源性泡沫细胞ABCA1表达的影响

THP-1巨噬细胞源性泡沫细胞经不同浓度(0,2,20,200 ng/ml)IL-18处理24h后,提取细胞总RNA和蛋白,通过实时荧光定量PCR和Western blot测定细胞内ABCA1基因和蛋白质表达的变化。结果显示,用IL-18单独处理细胞,ABCA1 mRNA和蛋白表达无显著变化(图1)。

图1 不同浓度IL-18对ABCA1 mRNA表达的影响(n=3)

*P>0.05 vs 0ng/ml组

2.2 IL-12对THP-1巨噬细胞源性泡沫细胞ABCA1表达的影响

THP-1巨噬细胞源性泡沫细胞经不同浓度(0,0.2,2,20 ng/ml)IL-12处理24h后,提取细胞总RNA和蛋白,通过实时荧光定量PCR和Western blot测定细胞内ABCA1基因和蛋白质表达的变化。结果显示,用IL-12单独处理细胞,ABCA1 mRNA和蛋白质表达无显著变化(图2)。

图2 不同浓度IL-12对ABCA1 mRNA表达的影响(n=3)

*P>0.05 vs 0ng/ml组

3 讨论

近年来,越来越多的研究证明动脉粥样硬化(As)具有慢性炎症疾病的病理生理过程,在As斑块中大量的炎性细胞浸润和炎性因子的表达促进斑块的发生、发展和破裂[5]。流行病学调查研究显示,高密度脂蛋白(high density lipid,HDL)水平与As相关的心血管疾病的风险呈负相关,其主要抗As的机制与HDL促进胆固醇逆向转运(RCT)有关[6]。RCT是将外周胆固醇转运到肝脏进行代谢的过程,其中HDL的主要成分载脂蛋白A-I(apolipoprotein A-I,apoA1-I)通过ABCA1促进巨噬细胞内胆固醇流出是RCT的关键环节[7]。最近的研究显示,炎症反应抑制体内RCT,可能为炎症促进As提供理论基础。然而,炎症影响RCT的具体机制还有待进一步阐明,其中炎症状态下脂质转运体ABCA1的表达变化可能是其关键机制[8-9]。ABCA1的表达受到多因素多水平的调控。在转录水平,多种促炎细胞因子,如TNF-α[10]、IL-1β[11]、C反应蛋白(CRP)[12]和IFN-γ[13]等通过LXR下调ABCA1的表达,从而抑制胆固醇的流出。在转录后水平,促炎蛋白,如LPS[14]、EPA[15]、钙蛋白酶[16]和钙调蛋白[17]等通过下调ABCA1的稳定性促进其降解,这些研究提示炎症状态下ABCA1的表达受到多种因素调节。

IL-18和IL-12是在As斑块中过量表达的炎症细胞因子,两者的水平与心血管疾病的风险呈正相关[18-20]。IL-18属于IL-1超家族成员,目前认为其是内源性和获得性免疫炎症反应的重要调节子[21]。IL-12由IL-12p40、IL-12p35两个亚基组成的,其中IL-12p35普遍表达于各类细胞,而IL-12p40主要表达于免疫细胞。在静止状态下,各种细胞中的IL-12p35是很微量的,在免疫反应时,IL-12p40可大量合成[22]。IL-12具有类似于IL-18的功能,对IL-18的生物学功能具有协同效应,两者的协同作用对于诱导IFN-γ等炎症因子的表达[23, 24] 、启动Th1反应[25, 26]和树突状细胞(DC)成熟[27, 28]等具有重要作用。虽然IL-18最初的功能被认为与诱导IFN-γ有关,然而最近的研究显示IL-18具有多种促As的功能。生理状态下,IL-18及其受体主要在血管平滑肌细胞和内皮细胞表达,炎症细胞表达IL-18R相对较少。但在As斑块中IL-18及其受体过量表达,尤其在巨噬细胞中表达明显。在血管平滑肌细胞、内皮细胞和巨噬细胞中,IL-18诱导IL-6、IL-8、ICAM-1和基质金属蛋白酶(MMPs)的表达,而且,与IL-12共同作用后,IL-18能促进平滑肌细胞IFN-γ的表达,这些作用对于As的形成具有重要意义[29]

参考文献

[1]Thompson SR, Novick D, Stock CJ, Sanders J, Brull D, Cooper J, et al. Free Interleukin (IL)-18 levels, and the impact of IL18 and IL18BP genetic variation, in CHD patients and healthy men. Arterioscler Thromb Vasc Biol 2007;27:2743-2749.

[2]Yamagami H, Kitagawa K, Hoshi T, Furukado S, Hougaku H, Nagai Y, et al. Associations of serum IL-18 levels with carotid intima-media thickness. Arterioscler Thromb Vasc Biol 2005;25:1458-1462.

[3]Zirlik A, Abdullah SM, Gerdes N, MacFarlane L, Schonbeck U, Khera A, et al. Interleukin-18, the metabolic syndrome, and subclinical atherosclerosis: results from the Dallas Heart Study. Arterioscler Thromb Vasc Biol 2007;27:2043-2049.

[4]Gerdes N, Sukhova GK, Libby P, Reynolds RS, Young JL, Schonbeck U. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. J Exp Med 2002;195:245-257

[5]Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352:1685-1695.

[6]Escola-Gil JC, Rotllan N, Julve J, Blanco-Vaca F. In vivo macrophage-specific RCT and antioxidant and antiinflammatory HDL activity measurements: New tools for predicting HDL atheroprotection. Atherosclerosis 2009;206:321-327.

[7]Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol;30:139-143.

[8]Yin K, Liao DF, Tang CK. ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport. Mol Med;16:438-449.

[9]McGillicuddy FC, de la Llera Moya M, Hinkle CC, Joshi MR, Chiquoine EH, Billheimer JT, et al. Inflammation impairs reverse cholesterol transport in vivo. Circulation 2009;119:1135-1145.

[10]Ma KL, Ruan XZ, Powis SH, Chen Y, Moorhead JF, Varghese Z. Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice. Hepatology 2008;48:770-781.

[11]Wang Y, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR. Downregulation of liver X receptor-alpha in mouse kidney and HK-2 proximal tubular cells by LPS and cytokines. J Lipid Res 2005;46:2377-2387.

[12]Wang X, Liao D, Bharadwaj U, Li M, Yao Q, Chen C. C-reactive protein inhibits cholesterol efflux from human macrophage-derived foam cells. Arterioscler Thromb Vasc Biol 2008;28:519-526.

[13]Hao XR, Cao DL, Hu YW, Li XX, Liu XH, Xiao J, et al. IFN-gamma down-regulates ABCA1 expression by inhibiting LXRalpha in a JAK/STAT signaling pathway-dependent manner. Atherosclerosis 2009;203:417-428.

[14]曹冬黎,尹凯,莫中成,郝新瑞,胡炎伟,李晓旭,唐雅玲,唐朝克. 脂多糖通过核因子-κB途径下调泡沫细胞ABCA1的表达. 生物化学与生物物理进展 2010;37(5):540-548.

[15]Hu YW, Ma X, Li XX, Liu XH, Xiao J, Mo ZC, et al. Eicosapentaenoic acid reduces ABCA1 serine phosphorylation and impairs ABCA1-dependent cholesterol efflux through cyclic AMP/protein kinase A signaling pathway in THP-1 macrophage-derived foam cells. Atherosclerosis 2009;204:e35-43.

[16]Wang N, Chen W, Linsel-Nitschke P, Martinez LO, Agerholm-Larsen B, Silver DL, et al. A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J Clin Invest 2003;111:99-107.

[17]Iwamoto N, Lu R, Tanaka N, Abe-Dohmae S, Yokoyama S. Calmodulin interacts with ATP binding cassette transporter A1 to protect from calpain-mediated degradation and upregulates high-density lipoprotein generation. Arterioscler Thromb Vasc Biol;30:1446-1452.

[18]Martins TB, Anderson JL, Muhlestein JB, Horne BD, Carlquist JF, Roberts WL. Risk factor analysis of plasma cytokines in patients with coronary artery disease by a multiplexed fluorescent immunoassay. Am J Clin Pathol 2006;125:906-913.

[19]Nichols TC, Fischer TH, Deliargyris EN, Baldwin AS, Jr. Role of nuclear factor-kappa B (NF-kappa B) in inflammation, periodontitis, and atherogenesis. Ann Periodontol 2001;6:20-29.

[20]Rodriguez G, Mago N, Rosa F. [Role of inflammation in atherogenesis]. Invest Clin 2009;50:109-129.

[21]Zirlik A, Abdullah SM, Gerdes N, MacFarlane L, Schonbeck U, Khera A, et al. Interleukin-18, the metabolic syndrome, and subclinical atherosclerosis: results from the Dallas Heart Study. Arterioscler Thromb Vasc Biol 2007;27:2043-2049

[22]Hauer AD, Uyttenhove C, de Vos P, Stroobant V, Renauld JC, van Berkel TJ, et al. Blockade of interleukin-12 function by protein vaccination attenuates atherosclerosis. Circulation 2005;112:1054-1062.

[23]Tominaga K, Yoshimoto T, Torigoe K, Kurimoto M, Matsui K, Hada T, et al. IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma production from human T cells. Int Immunol 2000;12:151-160.

[24]Papadakis KA, Prehn JL, Landers C, Han Q, Luo X, Cha SC, et al. TL1A synergizes with IL-12 and IL-18 to enhance IFN-gamma production in human T cells and NK cells. J Immunol 2004;172:7002-7007.

[25]Li Q, Carr AL, Donald EJ, Skitzki JJ, Okuyama R, Stoolman LM, et al. Synergistic effects of IL-12 and IL-18 in skewing tumor-reactive T-cell responses towards a type 1 pattern. Cancer Res 2005;65:1063-1070

[26]Rodriguez-Galan MC, Bream JH, Farr A, Young HA. Synergistic effect of IL-2, IL-12, and IL-18 on thymocyte apoptosis and Th1/Th2 cytokine expression. J Immunol 2005;174:2796-2804.

[27]Gherardi MM, Ramirez JC, Esteban M. IL-12 and IL-18 act in synergy to clear vaccinia virus infection: involvement of innate and adaptive components of the immune system. J Gen Virol 2003;84:1961-1972.

[28]Iinuma H, Okinaga K, Fukushima R, Inaba T, Iwasaki K, Okinaga A, et al. Superior protective and therapeutic effects of IL-12 and IL-18 gene-transduced dendritic neuroblastoma fusion cells on liver metastasis of murine neuroblastoma. J Immunol 2006;176:3461-3469.

[29]Kleemann R, Zadelaar S, Kooistra T. Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc Res 2008;79:360-376.