开篇:润墨网以专业的文秘视角,为您筛选了一篇电子设备谐波的不良影响及其治理措施范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘要:随着电力电子技术的发展,电力电子装置的广泛应用给电力系统带来了严重的谐波污染。各种电力电子设备在运输、冶金、化工等诸多工业交通领域的广泛应用,使电网中的谐波问题日益严重,许多低功率因数的电力电子装置给电网带来额外负担并影响供电质量,因此,电力电子装置的谐波污染已成为阻碍电力电子技术发展的重大障碍。故抑制谐波污染,提高功率因数的研究已成为电力电子技术中的一个重大课题。本文对最常用的电子设备和元件的谐波及其影响进行了分析,提出相应的对策。
关键词:电子设备谐波问题对策
电子设备的电源一般是整流电源,只在交流电压接近峰值时,整流管才导通有输入电流。由于在一周期内导通的时间很短,又必须维持设备正常的工作电流,所以输入电流呈脉冲状。这种脉冲状输入电流的基波含量小,而谐波含量大,且工作电流越大,脉冲电流的幅值就越大,形成严重的畸变电流注入低压电网,成为不可忽视的谐波源。
一.谐波的不良影响
1.对供配电线路的危害
(1)影响线路的稳定运行
供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。
(2)影响电网的质量
电力系统中的谐波能使电网的电压与电流波形发生畸变。
2.对电力设备的危害
(1)对电力电容器的危害
当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。
(2)对电力变压器的危害
谐波使变压器的铜耗增大,,还使变压器的铁耗增大。
(3)对电力电缆的危害
由于谐波次数高频率上升,再加之电缆导体截面积越大趋肤效应越明显,从而导致导体的交流电阻增大,使得电缆的允许通过电流减小。
二.对用电设备的危害
1、对电动机的危害
谐波对异步电动机的影响,主要是增加电动机的附加损耗,降低效率,严重时使电动机过热。尤其是负序谐波在电动机中产生负序旋转磁场,形成与电动机旋转方向相反的转矩,起制动作用,从而减少电动机的出力。
2、对低压开关设备的危害
对于配电用断路器来说,全电磁型的断路器易受谐波电流的影响使铁耗增大而发热,同时由于对电磁铁的影响与涡流影响使脱扣困难,且谐波次数越高影响越大;热磁型的断路器,由于导体的集肤次应与铁耗增加而引起发热,使得额定电流降低与脱扣电流降低;电子型的断路器,谐波也要使其额定电流降低,尤其是检测峰值的电子断路器,额定电流降低得更多。
3.对弱电系统设备的干扰
对于计算机网络、通信、有线电视、报警与楼宇自动化等弱电设备,电力系统中的谐波通过电磁感应、静电感应与传导方式耦合到这些系统中,产生干扰。其中电感应与静电感应的耦合强度与干扰频率成正比,传导则通过公共接地耦合,有大量不平衡电流流入接地极,从而干扰弱电系统。
4.影响电力测量的准确性
目前采用的电力测量仪表中有磁电型和感应型,它们受谐波的影响较大。特别是电能表(多采用感应型),当谐波较大时将产生计量混乱,测量不准确。
5.谐波对人体有影响
从人体生理学来说,人体细胞在受到刺激兴奋时,会在细胞膜静息电位基础上发生快速电波动或可逆翻转,其频率如果与谐波频率相接近,电网谐波的电磁辐射就会直接影响人的脑磁场与心磁场。
三、谐波的综合治理
目前,我国电力系统对谐波的管理呈现“先污染,后治理”的被动局面,所以如何综合治理已经成为一个迫在眉睫的研究课题。
1、加强科学化、法制化管理
主要从两个方面加强管理:
――普遍采用具有法律约束和经济约束的手段,改变先污染后治理的被动局面,即应该严格按照各类电力设备、电力电子设备的技术规范中规定的谐波含量指标,对其进行评定,如果超过国家规定的指标,不得出厂和投入电力系统使用;
――供电部门应从全局出发,全面规划,采取有力措施加强技术监督与管理,一方面审核尚待投入负荷的谐波水平,另一方面对已投运的谐波源负载,要求用户加装滤波装置。
、采取有效的技术措施
目前解决电力电子设备谐波污染的主要技术途径有两条:
――主动型谐波抑制方案即对电力电子装置本身进行改进,使其不产生谐波,或根据需要对其功率因数进行控制;
――被动型谐波抑制方案即谐波负载本身不加改变,而是在电力系统或谐波负载的交流侧加装无源滤波器(PF)、有源滤波器(APF)或者混合滤波器(HAPF)等装置,通过外加设备对电网实施谐波补偿。
1)主动型谐波抑制方案
主要是从变流装置本身出发,通过变流装置的结构设计和增加辅助控制策略来减少或消除谐波,主动型谐波抑制方案的主要问题在于成本高、效率低。同时,电力电子系统中很高的开关频率使PWM载波信号产生高次谐波,还会导致高电平的传导和辐射干扰。因此在设计主动型谐波抑制方案时,必须用EMI滤波器将高次谐波信号从系统中滤除,防止它们作为传导干扰进入电网;还要利用屏蔽防止它们作为辐射干扰进入自由空间,对空间产生电磁污染。所以对于较大功率的电力电子装置,一般除了采用主动型谐波抑制方法以外,还要辅以无源或有源滤波器加以抑制高次谐波。
2)被动型谐波抑制方案
――无源滤波器(PF)无源滤波器通常采用电力电容器、电抗器和电阻器按功能要求适当组合,在系统中为谐波提供并联低阻通路,起到滤波作用。无源滤波器的优点是投资少、效率高、结构简单、运行可靠及维护方便,因此无源滤波是目前广泛采用的抑制谐波及进行无功补偿的主要手段。无源滤波器的缺点在于其滤波特性是由系统和滤波器的阻抗比所决定,只能消除特定的几次谐波,而对其它次谐波会产生放大作用,在特定情况下可能与系统发生谐振;
――有源电路调节器从原理上分析,与APF单节点谐波抑制相比较,APLC是向网络中某个(几个)优选节点注入补偿电流,通过补偿电流在网络中一定范围内的流动,实现该范围内所有节点谐波电压的综合抑制。即通过单节点单装置的装设,达到多节点谐波电压综合治理的功能,APLC的出现,表明电力系统谐波治理正朝着动态、智能、经济效益好的方向发展。
无功功率对供电系统和负荷的运行都是十分重要的。电力系统网络元件的阻抗主要是电感性的。因此,粗略地说,为了输送有功功率,就要求送电端和受电端的电压有一相位差,这在相当宽的范围内可以实现;而为了输送无功功率,则要求两端电压有一幅值差,这只能在很窄的范围内实现。不仅大多数网络元件消耗无功功率,大多数负载也需要消耗无功功率。显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。合理的方法应是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。