首页 > 范文大全 > 正文

以布尔建模技术随机生成透镜体的方法

开篇:润墨网以专业的文秘视角,为您筛选了一篇以布尔建模技术随机生成透镜体的方法范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘 要:在工程勘察或基础设计方面,通常的做法是假设土层水平,将透镜体或尖灭不见的软弱夹层的工程效应略去不计,此等简化颇可商榷。事实上透镜体夹层由于其高压缩性和高孔隙比,很容易引发差异沉降,而差异沉降相对于均匀沉降而言危害更为严重,这必然对地基沉降有相当程度的影响。针对此种情况,本文采用布尔随机建模技术,对土层中的透镜体,以类似椭圆的几何形状进行随机模拟,可根据钻孔资料,揭示透镜体的分布以及在横向、纵向上的变化规律。模拟结果表明布尔建模方法可以很好的再现透镜体的空间分布,有利于更真实的反映实际的工程地质条件。

关键词:随机模拟 透镜体 布尔建模 钻孔

中图分类号:TU19 文献标识码:A 文章编号:1672-3791(2011)09(a)-0027-02

在工程勘察或基础设计方面,传统做法是假设土层水平,将透镜体或尖灭不见的软弱夹层的工程效应略去不计,这是因为土层中的软弱透镜体夹层,其形状、深度、出现频率不易掌握,若在计算中将单独出现的透镜体纳入研究,势必会延伸成一新的水平土层,故大部分研究都将透镜体忽略不计,此等做法颇可商榷。事实上透镜体夹层由于其高压缩性和高孔隙比,很容易引发差异沉降,而差异沉降相对于均匀沉降而言危害更为严重,这必然对地基沉降有相当程度的影响。

1 透镜体

1.1 简介

透镜体主要成分为粘土矿物,颗粒较小,不同的环境形成的透镜体有很大的差异,透镜体按成因分为沿海沉积类和内陆沉积类。

(1)沿海沉积类。

①滨海相沉积:此类土层常夹粉砂薄层或透镜体。特别是年代较新的土,工程性质差。②三角洲相沉积:海相与陆相的的交替沉积,多交错斜层理或不规则的透镜体夹层。

(2)内陆沉积类。

①湖相沉积:往往含有不等的泥炭夹层或透镜体。②河漫滩相沉积:河流的中下游河谷常有此类沉积相。软弱土常夹于上层粘土层之中,常为透镜体状,大小、成分、性质变化大。③牛轭湖相沉积:土层性质类似湖相沉积,但分布范围窄,呈透镜体埋于冲积层下(如图1)。

2 布尔方法简介

2.1 基本原理

设为坐标随机变量,是表征第类几何物体几何特征(形状、大小、方向)的参数随机变量;则第类几何物体中心点的分布构成过程,它可以用形状随机过程和表示第类几何物体出现与否的指标随机过程来表示。两者的联合分布“示性”,从而构成一示点过程;坐标位置点过程的产生方法视具体情况而定。在认为示性点位置完全随机的前提下,当目标位置相互独立、目标密度为常数时,可以认为目标中点位置符合平稳泊松点过程。当目标位置既相互独立,又相互联系(如重叠)时,相应的点过程称为吉布斯点过程。以泊松点过程为基础的模拟方法适合模拟砂土背景上存在小尺度透镜体隔层这类现象;而以吉布斯点过程为基础的模拟方法适合于以河道砂层带内各河道透镜体相互镶嵌的现象,如模拟河流或河流三角洲河道及相关地区。

2.2 计算方法

透镜体很少是一种简单的形状,也很少按确定的随机分布规律随机地分布于地层之内。即使很密集的3―D露头采样所取得的数据也很难确定{,(=1,2,3…,∈定义域)}的复杂联合分布。因此,布尔离散模型的确定主要是一个“逐步逼近过程”;即用各种参数分布和相互作用的多种组合进行迭代,直至最终得到令人满意的随机图像为止;具体地讲,就是根据具体问题设计一个目标函数,并确定一个目标函数阈值;用随机抽样的方法,通过从已知样本中抽样产生示性点过程随机变量,计算目标函数值,直至达到函数阈值为止。

(1)随机抽样产生透镜体中心位置。

(2)从经验累积概率分布函数中随机抽取透镜体厚度。

(3)由已确定的厚度-长度关系确定透镜体长度。

(4)计算目标函数值():

(1)

(5)重复上述过程产生另一个透镜体,计算值,直至达到给定为止。

2.3 值计算公式推导

假定钻井数足够大。如图3所示,设为剖面宽度,L为剖面长度,为均匀细分剖面小段的个数,为一个细分小段尺寸,为细分小段内截取的透镜体厚度平均值(图3)。又设为第细分小段内透镜体钻遇率,即:

(2)

其中为第细分小段内砂土钻遇透镜体井数,为钻井总数。

常数(3)

其中,为第细分小段内截取的透镜体累计长度。第细分小段内截取的透镜体累计面积:

(4)

当足够小时,,第细分小段内截取的透镜体面积百分数:

(5)

因此,所有细分小段内截取的透镜体面积百分数累计为:

(6)

2.4 随机建模步骤

2.4.1 布尔模拟前期数据处理

(1)确定各砂层组的透镜体体长/厚比。按照各砂层组的沉积特征,参照附表确定透镜体宽/厚比分别。

(2)确定透镜体/剖面面积比。透镜体/剖面面积比由式(1)定义。在钻井数量很少的情况下,由于井间透镜体的分布情况是未知的,直接确定值是很困难的,甚至是不可能的。因此,必须寻求其它途径求取值。本文采用的方法是:①将剖面细分成个小段,使得每一细分小段厚度(出)远远小于透镜体成因单元厚度;②统计每一小段内的砂岩钻遇率();③计算:即。

(3)统计砂层组透镜体成因单元厚度分布。

(4)确定单透镜体在纵向上的分布概率。

(5)采用前述算法进行随机模拟。

2.4.2 布尔模拟实现步骤

布尔模拟实现的一般步骤为:(1)把已知井位处的透镜体条件化,得到条件数据(见图2a),砂体中心位置可以是随机的;(2)随机抽样产生预测砂体中心位置(x,z)(见图2b);(3)检查该砂体与已知井位处的数据是否发生冲突,若是,调整该砂体(见图2c),否则进行下一步;(4)从经验累积概率分布函数中随机抽取该砂体厚度;(5)由已确定的厚度、宽度关系确定砂体宽度;(6)计算目标函数(砂体剖面面积创面总面积)的值;(7)转到步骤(2)产生另一透镜体,计算值,直至达到给定阙值为止(见图2d)。

3 透镜体随机生成

3.1 透镜体随机生成的实施步骤

用电子计算机随机生成透镜体进行相关数值模拟之前,首先需要确定生成区域,透镜体的形状以椭圆进行模拟,然后根据统计数据,分别建立三个分布函数,透镜体中心点分布函数、长短轴分布函数和倾角分布函数,可以是均匀分布,正态分布或者对数正态分布。根据其分布形式采用蒙特卡罗法产生相应分布的随机数,在该区域中随机生成透镜体的中心位置,长轴、短轴和倾角,用计算机模拟产生透镜体的透镜体单元,一般步骤为以下几点。

(1)根据的分布形式产生随机数确定第个颗粒的中心位置。

(2)根据和的分布形式产生两个随机数,确定该颗粒的长短轴比和长轴a并求得短轴.这样一个透镜体的初步位置得以确定。

(3)检验该透镜体是否合适,即保证新产生的椭圆要在允许的边界之内,如果考虑透镜体不能与已产生的发生重叠,必要时对新产生的透镜体的参数进行微小的调整再进行试算。

3.2 椭圆重叠的判断

在整体坐标系中,两个椭圆的重叠判断可用数学公式推导求得,但相对较复杂。本文改将其中一椭圆形颗粒(颗粒i)的边界点以有限点逼近,另一椭圆形颗粒(颗粒j)以其长轴(短轴亦可)为映射基准轴,将颗粒j映像成圆形颗粒,而颗粒i的有限点亦同时随之以同样方式映像,最后以映射后的颗粒i的有限点与颗粒j映射后所产生的圆形颗粒进行重叠判断。椭圆重叠判断可根据下式进行判断(如图3):

为椭圆j的主轴与水平的夹角,为颗粒j外部点坐标,为点与椭圆形颗粒j中心点连线方向与水平方向的夹角,为椭圆j的长短轴半径。

若存在任一有限点在映射后所产生的圆形颗粒内,即,则可判断此二颗粒重叠;若映射后仅有一有限点位于映射后所产生的圆形颗粒圆周上,即,则此二颗粒接触但无重叠;若映射后没有任何一有限点点位位于映射后所产生之圆形颗粒内或圆周上时,即则此二颗粒未接触且无重迭。

两个透镜体相交,需要调整对透镜体的中心做修正调整。修正后的颗粒继续与其它颗粒判断和修正,若超过予先允许的修正次数,仍找不到合适位置,则退出判断,需产生新的随机数,重新开始检验。

4 结语

模拟结果表明,布尔建模方法可以揭示透镜体的分布以及在横向、纵向上的变化规律,很好的再现透镜体的空间分布,有利于更真实的反映实际的工程地质条件。

在井资料很少的情况下,使用布尔方法建立的透镜体连续性模型,使得建模参数更合理、可信,布尔方法简单、使用灵活。具体应用时可以容易也将地质资料加入到模型中,模拟结果比较贴近地质概念。

参考文献

[1] 胡向阳,熊琦华,吴胜和.储层建模方法研究进展[J].石油大学学报,2001,25(1):107~112.

[2] 吕晓光,王德发,姜洪福.储层地质模型与随机建模技术[J].大庆石油地质与发,2000,19(1):10~13.

[3] 李夕兵,蒋卫东.尾矿堆积坝透镜体分布形态研究[J].岩土力学,2004,25(6):947~949.

[4] 文健,裘怿楠.早期评价阶段应用Boolean方法建立砂体连续性模型[J].石油学报,1994,15(4):171~177.

[5] 李少华,张昌民.应用改进的布尔方法建立砂体骨架模型[J].石油勘探与开发,2000,27(3):91~92.

[6] 李少华,张昌民.布尔方法储层模拟的改进及应用石油学报[J].2003,24(3):78~81.

[7] Jeffrey M,Richard L[著],穆龙新,陈亮[译].随机建模和地质统计学[M].北京:石油工业出版社,2000.