开篇:润墨网以专业的文秘视角,为您筛选了一篇基于计量模型的劳动力需求量影响因素分析范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
[摘要] 劳动力的需求状况是决定和影响就业的重要因素,它本身受经济增长、政策和季节等方面的因素影响。本文使用某国1995年~2005年间的时间序列数据,以计量经济学模型为基础,将先验经济理论与数理统计分析结合,建立对数线性回归模型,分析了各种影响因素对劳动力需求量的影响程度,为判别劳动力需求总量的发展趋势和预测提供依据。
[关键词] 劳动力需求 对数线性回归 影响因素 变量显著性检验
我国是世界上人口基数最大、劳动力资源最丰富的国家,研究劳动力市场有利于劳动力的供求保持动态的平衡,实现剩余劳动力的合理转移,进而完善市场经济体制。对劳动力市场需求规模的研究为解决我国劳动力供求矛盾,降低失业率具有极其重要的作用。
一、劳动力需求量变动的影响因素
社会劳动力需求总量是一定时期内社会经济发展对劳动力需求的总量。劳动力的需求是一种派生需求,因为劳动力需求产生的直接基础是人们对产品和服务的需求。社会各企、事业单位之所以需要雇佣劳动力,是因为劳动力与其他生产要素的结合能够为市场提品或服务。因此,劳动力需求的直接基础是人们对产品和服务的需求。
通过概括以往对劳动力市场的研究发现,影响劳动力需求总量变动的因素可以归纳为:经济增长、政策和季节性三个方面。
1.经济增长
从宏观上说,劳动力需求总量取决于经济增长和发展能够创造多少就业机会, 而这个数量又取决于经济增长规模、结构,以及发展的质量等。经济增长产生的直接结果是资本增加,新增资本追加投入到生产领域创造更多就业机会,从而增加劳动力需求。经济增长还会带来技术进步,新技术新机器的应用取代了本来由人完成的大量工作,减少对劳动力的需求。这两方面因素共同作用的结果是,劳动力需求增长的速度总是低于经济增长的速度,从劳动力市场发展的历史过程来看也验证了这一点。
2.政策
在实行市场经济体制的国家,通常认为劳动力市场不同于其他商品市场。政府很少干涉普通商品市场,而往往对劳动力市场干预较大。由于工资是劳动力市场的价格信号,因此成为政府调节劳动力供求关系的重要手段。在实行最低工资政策的劳动力市场中,初级劳动力的工资很大程度上受最低工资率影响甚至由其决定,如果雇主面临成本压力,可能裁员或减少招募新员工。有研究表明,最低工资增加10%,会减少年轻人就业率1%~3%。通过调节产业结构改变整个劳动力市场的用人结构也是政策调整的手段之一,比如鼓励用人密集型产业的发展等。此外,对外开放、经济体制改革等也会对劳动力需求有较为明显的影响。
3.季节性
劳动力需求总量的季节变动指以一年为周期的周期变动,产生的原因可能是四季变化、节日或寒暑假等。第一产业受季节性因素的影响最为显著,农业生产的主要环节都需要在一定的时间内集中完成,而且劳动强度大,因而或多或少地造成了对雇佣劳动的季节性需求。建筑、房地产、原材料开采、旅游、娱乐等第二、三产行业也会不同程度的受到季节影响。
二、劳动力需求总量计量模型的建立
本文以某国10年间长期固定工作的劳动力需求数据为基础,建立了用于分析和判别劳动力需求总量影响因素的模型,并据此进行对该国劳动力市场需求趋势的判别与预测。长期固定工作具有如下特点:劳动期限不固定,雇主无法定的合理原因不能随意解除劳动合同,并且依法向劳动者支付以最低工资为下限的薪金并缴纳各类保险。长期固定合同最大程度的保障了劳动者的权益,在该国劳动力市场也最为普遍,因此最具有代表性。
某国劳动力市场1995年~2005年间长期固定工作的劳动力需求数据见表1。
数据来源为该国官方劳动统计机构
1.模型的初建
首先,我们选取影响劳动力需求的主要因素,即经济增长、政策和季节性,作为变量来建立初步的劳动力需求模型。
对于计量模型的选择,考虑到各解释变量对于被解释变量的影响是非独立的,再加之我们的研究目的是为了确定因变量对于各解释变量的弹性,因此,选择对数线型模型来建立劳动力需求函数。
经过分析,建立初步计量模型如下:
LnY=at+b+∑ai*Ri*t+∑bi*Ri+∑cj*Sj
Y-劳动力需求总量
t-时间(单位:年)
Ri-政策虚拟变量
Sj-季节虚拟变量
a,ai,b,bi,cj-未知参数
i=1,2,3,4
j=1,2,3…12
其中a值大小反应劳动力需求随时间增长的总趋势,其根本原因为经济随时间的累积而增长;1995年~2005年间该国有关劳动力市场的重大政策变动有四次,分别在1996年、1998年、2000年、2003年。分别用虚拟变量R1、R2、R3、R4表示, 即1996年以后R1取值为1,之前取值为0,以此类推;季节虚拟变量S1,S2…S12分别表示一年中的12个月份。
2.初步回归模型检验。用SAS软件对上述模型进行回归分析,除S1、S2、S4、S5、R1*t外其余变量都能够通过变量显著性检验。表明一月、二月、四月、五月对该国劳动力市场的需求总量基本没有影响,第一项政策对劳动力需求的趋势影响较小,因此将它们从模型中剔除。
3.修正回归模型的检验
(1)拟合优度检验。从修正模型的回归结果来看,测定系数R-squared值为0.8744,拟合度良好。
(2)残差序列自相关性检验。在上述方程的回归结果中,DW值为2.060,可见残差序列不存在自相关性,因此模型的设定是正确的。
(3)变量显著性检验。如表2所示,所有变量的拒绝概率都小于0.05,全部通过检验。经过整理后,最终建立的多元对数线性回归模型如下:
LnY=(0.009+0.121R2-0.205R3+0.095R4)*t+0.294R1-
0.471R2+0.635R3-0.063R4+0.107S3+0.068S6-0.044S7-
0.146S8+0.184S9+0.069S10-0.132S11-0.262S12+11.525
三、实证分析的经济学解释
根据上述结果,做进一步分析,可以得到以下结论:
1.经济增长对劳动力需求的影响
从回归的结果可以看到,劳动力需求随着时间的增长有微弱上升的趋势,年增长率大约为0.9%(ea-1),假设这十年内该国经济年平均增长率为5%,则可推论该国经济每增长一个百分点,能够带动劳动力需求增长0.18%。
2.政策对劳动力需求的影响
根据回归结果可以看到,1998年和2003年该国出台的政策对劳动力需求起到促进作用,加速了劳动力需求随着时间的增长,分别使劳动力需求增长速度提高了13%和10%, 而2000年出台的政策则减少了市场对劳动力的需求,劳动力需求增长速度减少了19%。
3.季节对劳动力需求的影响
从回归结果可以看到,三月、六月、九月、十月是该国劳动力需求最旺盛的时节,尤其三月份和九月份比平时的劳动力需求增加了10个百分点以上,而七月、八月、十一月和十二月是劳动力市场最为惨淡的季节,特别是十二月份的劳动力需求比平时减少了23%.
四、所建计量模型的意义
综上所述,该计量模型可以用来分析劳动力需求总量的变动趋势。在给出未来某时期全社会经济增长速度和相关政策等因素的基础上,依据该模型计算出劳动力需求的预测值,可大体观测劳动力需求的波动情况,为政府宏观调控部门、劳动力市场相关管理部门以及就业服务中介机构提供分析依据。有利于各方主体进行理性决策、采取有效措施,以规避风险、提高劳动力市场效率,推进我国劳动力市场的改革和规范化进程,实现劳动力市场的健康、稳定和持续发展。
参考文献:
[1]Arnaud RYS, Nicolas VANEECLOO. Econométrie: théorie et Application[M].Nathan, Paris.1998
[2]童玉芬:北京劳动力需求量变动及影响因素的分析[J].求是学刊, 2007(9)
[3]周雪梅赵丽:最低工资政策对劳动力市场的影响[J].商业文化, 2007(7)
[4]李洪娟:秦皇岛经济增长与就业的相关性分析[J].商场现代化, 2007(6)