首页 > 范文大全 > 正文

基于CDIO的“电子电路技术与实验”课程研究

开篇:润墨网以专业的文秘视角,为您筛选了一篇基于CDIO的“电子电路技术与实验”课程研究范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:引入CDIO教育理念,针对“电子电路技术与实验”课程在教学理念、教学手段和考核方法等方面提出了改革构想并进行了具体的实践,在增强学生学习积极性、创新性和协作能力等方面取得了一定的效果。

关键词:CDIO;电子电路技术与实验;改革;实践

作者简介:周童(1981-),男,江苏南通人,南通大学电子信息学院,讲师;周晶(1976-),女,江苏南通人,南通大学电子信息学院,讲师。(江苏 南通 226019)

基金项目:本文系南通大学教学研究课题(课题编号:2011B43)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)27-0117-02

CDIO(Conceive Design Implement Operate)[1]教育理念近年来在国际工程教育界十分流行,它的基本方法是以工程产品的研发到实际产品运行这一过程为载体,让学生以主动的、实践的、课程之间有机联系的方式学习工程。CDIO的培养大纲将工程毕业生应具备的能力按工程基础知识、个人能力、人际团队能力和工程系统能力这四个层面加以划分,大纲要求通过综合培养的方式使学生在这四个层面上均衡地达到预定培养目标。

自2003年,周立功教授在江西理工大学首次以3+1教育模式率先开展了CDIO性质的教育试点以来,已经过去十个年头了。其间,中国教育部多次组织会议与国内外著名高校的专家学者讨论了中国进行工程教育改革的紧迫性与必要性,并制订了一些工程教育改革方案。迄今为止,国内已有近四十所高校先后被定为CDIO教育模式的研究与实践试点单位,并均已获得不同程度的教育成果。

一、关于“电子电路技术与实验”

1.课程的基本设置

“电子电路技术与实验”是南通大学(以下简称“我校”)计算机科学与技术学院下计算机科学与技术、软件工程和网络工程专业的一门十分重要的专业基础课,由电路基础和模拟电子技术综合而成。原先的课程设置与课时分配如下:电路基础部分共10章40学时,模拟电子技术部分共10章40学时,实验部分共4次试验16学时,总共96学时,其中实验部分安排在期末进行。教材的使用情况为:电路部分使用普通高等教育“十五”国家级规划教材《电路》第5版,模拟电子技术部分使用面向21世纪课程教材《电子技术基础——模拟部分(第五版)》。

学生的期末总评成绩按平时表现30%,期末考试70%的比例计算,期末考试为闭卷笔试,实验部分不计入最终的总评成绩评定。

2.课程存在的问题

从前几轮的教学情况来看,笔者认为我校该课程在改革前存在以下问题:

(1)教材选取并不十分合适。《电路》和《电子技术基础——模拟部分》这两本教材内容广泛、讲解详尽、思维缜密,对于电类专业的学生而言十分合适。但是,对于总共只有80学时的“电子电路技术与实验”而言,这两本教材的内容显然太多、太细、太深,结果只能是某些大章被舍弃不讲,而保留的大章中也要对其中的小节有所取舍。即便如此,每一大章所能分得的平均学时数也只有4个学时,老师讲解得很匆忙,学生听起来也吃力。如此大量地削减书本中原有的知识点,会给学生的自学增加难度,多数有课前预习和课后复习习惯的学生都反映因知识不连贯造成了理解上的困难。

(2)电路基础部分的讲授过程过于抽象。电路基础部分是“电子电路技术与实验”课程中最先讲解的部分,从电路模型开始讲到频率响应,前后涉及10个大章。其中绝大部分都是在做电路的等效变换和相关的数学计算,讲授过程也是按传统的顺序讲解。对于电类的学生而言,他们有整个学期的时间去不断实践和强化相关的知识。然而,对于憧憬着自己未来成为计算机硬、软件或者网络技术方面人才的计算机专业的学生而言,大学里第一门专业基础课就如此抽象、枯燥,而且里面的知识似乎也跟计算机没什么太大联系,多数的学生都表现出了反感和厌学的情绪,从而直接影响了后续的模电部分的学习。

(3)模拟电子技术部分的讲授内容过多。从现有教学大纲来看,《电子技术基础——模拟部分》教材中除了最后一章SPICE辅助分析设计不讲以外,其余大章基本一个不落。这些内容虽然都有实际的器件和实用电路作为支撑,但由于电路结构多变,设计参数众多,计算过程繁琐,对于之前已经对该课程产生了厌恶情绪的学生来说,更繁更难的模电内容无疑是雪上加霜。而对于有较好学习方法的学生,要在短时间内掌握如此多的内容,也是不小的挑战。

(4)实验部分安排不合理。实验课安排在学期末进行,时间上跟理论课脱节,往往是做实验的时候,相关的理论知识已经遗忘殆尽了;同时,实验部分不计入最终的总评成绩评定,这就使得实践环节的重要性再次降低,学生根本不认真对待。

(5)考核方式与工程教育的理念不相符合。传统的闭卷笔试,以各自独立的分析计算题为主,配以选择、填空题。学生为了通过考试而海量做题,整个课程学完,学生说不出学过什么,学的知识有什么用,当然也就无法应用于实际的工程实践。

二、基于cdio的课程改革构想

对“电子电路技术实验课程引入CDIO教育模式进行改革,主要是为了增强学生电子电路技术的兴趣度、认知度和实践能力。从电路的宏观功能入手,对项目的组成模块逐一分解,各个击破,让学生从“做中学”。笔者在研究了相关课程[2,3]的改革思想之后,针对本课程的CDIO模式改革提出了以下构想:

1.选用更合适的教材

针对之前的教材理论性强、内容多的问题,我校反复比较,仔细斟酌,选择了“十一五”国家教材《电路与模拟电子技术(第二版)》一书。该书专门针对计算机专业的学生编写,压缩了传统教材中电路基础部分,重新整合了模电部分,更加适合计算机专业这样既需要较熟练地掌握电工电子技术的方法而又不要求作深入研究的学生使用。

2.适当改变授课顺序

以往的授课顺序都是自下而上,这样虽然起步时较为轻松,但对于现学的知识在整个课程体系中的作用,学生几乎都是一头雾水。建议可以从一个具有综合性但又不太复杂的实际系统入手,反过来自上而下地讲解相关知识点。例如通过单相小功率直流稳压电源,用图1的讲解方式逐渐引出各个相关的知识点。

3.弱化电路基础与模拟电子技术之间的课程界线

采用图1的讲解方式之后,电路基础和模电中各自的知识点不再泾渭分明,而是需要什么就讲什么。实际器件、电路和抽象的定理、方法互相穿插,相互支撑,可以降低学生学习的疲劳度,激发学习的兴趣和信心。

4.实验课程的改革

增加实验课的课时量,将实验课平行于理论课进行,甚至可以直接进入理论课的教学环节。实验内容的选取须紧密结合理论课内容,借助EWB或者SPICE仿真软件,在理论课堂上就可以直接向学生展示电路的仿真原理图和结果。同样,某些理论课上的知识点也可以在实验课上通过实验的方式提出并呈现给学生。另一方面,实验课不能局限于软件仿真,应该在条件允许的情况下多进行实物实验,通过在面包板上搭建实物电路并运行,不仅锻炼了学生个人操作能力,还能培养其人际团队合作能力。

5.考核方式的改革

纯粹的理论闭卷笔试必须被理论结合实践的考核方式所替代。建议只把最基本的理论分析和计算作为笔试内容,如电阻电路的基本分析方法和定理,基本共射极放大电路的计算等。实践考试则以在规定时间内,按小组划分,完成随机抽取的项目设计题的方式进行。实践考试中允许翻阅相关资料或在组内互相讨论。实践部分的评分方式可以参考模糊层次分析法,[4,5]按成果、口试和团队三个方面综合评分。最终的考核成绩中,理论笔试占50%,实践考试占40%,平时表现占10%。

三、已实施的改革步骤

由于得到我校教学研究课题的基金支持,“电子电路技术与实验”课程的CDIO模式改革已经初见成效:

第一,在更换教材的同时,重新分配了电路基础与模电部分所占的课时比例,增加了实验课的课时量。电路基础调整为28学时,模拟电子技术为36学时,实验32学时。考虑到原先的课后作业多有抄袭现象发生,现将平时作业从课后作业改为课堂练习,题目也精选极具代表性的题型。

第二,理论课内容进一步精简。新教材的理论内容已经较原来的教材有所压缩,但由于课时所限,有些知识点在实际授课时必须做弱化处理。例如二极管、三极管和运算放大器只强调外特性而不细究内部工作原理,交流电路只涉及单相正弦稳态电路的一般分析而对三相电路和相量图分析法不做要求。

第三,实验课不再放到学期末进行,而是有机地穿插在理论课当中。在某些理论课的授课过程中加入SPICE软件的仿真演示,很好地提高了学生对抽象知识点的认知度,提高了学习积极性,降低了思维疲劳度。在实验机房中完成的实验课,则让学生自愿组合成固定的实验小组,一般3至5人一组,每个人选取大项目中不同子项目进行设计与实验。

第四,期末考核方式由原先的闭卷笔试改为笔试和实践相结合。笔试部分只占总评成绩的50%,主要是考查学生最基本的概念和基础的分析与计算。实践能力考核占总评的40%,考核时依然以平时实验课的实验小组为单位,完成当场抽取的设计项目,最终按子项目的难易程度与完成度评出个人能力成绩,按大项目的完成度及优劣评出人际团队能力成绩。平时表现占10%,包括理论课上课堂练习完成的情况和实验课上口头问答的情况。

四、结束语

CDIO是一种先进的教育模式,本文将CDIO理念引入到“电子电路技术与实验”课程中,在教学理念、教学手段和考核方式等方面提出了改革构想,并在校教学研究课题基金的支持下完成了部分改革,取得了一定的效果。同时,也为近电类专业中的电类课程的改革提供了新的思路。

参考文献:

[1]Edward Crawley,Johan Malmqvist,Soren Ostlund,等.Rethinking Engi-

neering Education:The CDIO Approach [M].Berlin:Springer-Verlag,2007.

[2]张国平,付贵阳,马永力.基于CDIO教育模式的电路课程教学研究与实践[J].中国电力教育,2010,(22):93-94.

[3]王照平,李文方,王玉巧,等.基于CDIO模式的《模拟电子技术》课程改革与实践[J].电子测试,2013,(3):198-199.

[4]唐有文.模糊层次分析法[J].青海师范大学学报(自然科学版),

2002,(3):19-23.

[5]丁光彬,张红光, 于佐东,等.CDIO工程教育模式下学生学习评估方法探索[J].中国电力教育,2010,(32):52-53.