首页 > 范文大全 > 正文

“自动控制原理”实验教学模式探讨

开篇:润墨网以专业的文秘视角,为您筛选了一篇“自动控制原理”实验教学模式探讨范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:通过对“自动控制原理实验教学改革的初步探索,对实验教学模式进行了探讨,分析了几种常见实验方式的优缺点,提出了物理实验与虚拟仿真实验相结合的实验教学模式,可以更有效地提高学生的工程实践能力和创新能力,并提出了自动控制原理虚拟实验系统的研究方向。

关键词:自动控制原理;实验教学模式;虚拟实验

作者简介:任琦梅(1978-),女,河南平顶山人,河南城建学院电气与信息工程学院,讲师;董燕飞(1976-),女,河南平顶山人,河南城建学院电气与信息工程学院,副教授。(河南 平顶山 467036)

基金项目:本文系河南城建学院2013年度科学研究基金项目(项目编号:2013JZD007)的研究成果。

中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)35-0139-02

“自动控制原理”是自动化及相关专业必修的一门重要的专业基础课,是一门理论性较强的工程科学,概念抽象,内容丰富,涉及知识面广。实验教学是自动控制原理教学的重要组成部分,通过实验可以使学生加深对理论知识的理解,并且初步将理论知识应用于工程实际。如何有效地组织实验教学,提高学生的工程应用能力、创新能力和综合素质,是实验教学改革中重要的研究内容。笔者结合几年来自控原理实验教学的经验,对常见的一些实验方式进行分析,对实验教学模式进行探讨。

一、常见的实验方式

1.采用信号发生器、模拟实验箱和慢扫描示波器构成实验平台

这种实验方式是在实验箱上用运算放大器、电阻、电容等元件搭建电路,模拟典型环节或系统,由函数信号发生器提供阶跃、脉冲、正弦波等信号作为环节或系统的输入信号,在慢扫描示波器上把响应曲线显示出来。

(1)优点:学生在实验过程中通过搭建电路可以对控制系统的构成有一个感性的认识;进一步练习和熟悉信号发生器、慢扫描示波器等仪器的使用,提高学生的动手能力。

(2)缺点:因为系统的阶跃响应过渡过程很快,普通示波器无法显示,因此需要使用慢扫描示波器,增加了实验室建设的成本;实验的主要目的是对控制原理中抽象的理论知识有更深的理解,但学生在实验过程中要花大量的时间来连接线路和调试仪器,容易忽视对实验结果的分析;实验中经常会受到元件参数不稳定的影响和设备条件的限制,使实验值和理论值不相吻合或误差过大,导致学生产生错误的理解;某些内容无法实验,或实验结果不直观、不准确:如根轨迹部分无法进行实验;频率特性部分Bode图需根据示波器得到的李萨育图形进行计算描点绘制,Nyquist图需根据测出的数据描点绘制。

2.采用模拟实验箱、AD/DA转换卡、计算机构成实验平台

这种实验方式也是在模拟实验箱上搭建电路来模拟典型环节或系统,模拟实验箱和计算机通过A/D、D/A转换卡和数据线进行通信,由计算机产生各种典型输入信号,经过A/D转换后送给模拟电路,输出信号经过D/A转换后送到计算机中进行显示。

如典型二阶系统的阶跃响应实验,模拟电路图如图1所示:

(1)优点:和第一种实验方式一样,学生在实验过程中通过搭建电路可以对控制系统的构成有一个感性的认识;计算机代替了函数信号发生器和慢扫描示波器的作用,降低了实验室建设成本;实验过程中无需过多调试仪器,实验过程变得简单,节省了实验时间,使学生可以把重点放在对实验结果的分析上;计算机强大的处理功能使实验结果更加准确直观,测量方便:如阶跃响应曲线上超调量和调整时间可以直接读数,频率特性实验中可以直接显示Bode图和Nyquist图。

(2)缺点:仍然没有解决根轨迹部分无法做实验的问题;做系统校正实验或高阶系统实验时,实验线路连接麻烦,出错时不容易检查,且修改系统参数不方便;实验结果的准确性和实验项目的设置对实验软件有依赖性,不能很灵活地自行设置实验内容。

3.利用MATLAB软件进行仿真实验

这种实验方式是利用MATLAB和SIMULINK软件强大的仿真能力,通过软件编程的方法在计算机上实现环节或系统的构建、参数的修改、输入信号的产生和实验结果的显示。

也以典型二阶系统的阶跃响应实验为例,在MATLAB软件命令窗口输入以下程序:

wn=1;t=[0:0.1:15];

for z=[0:0.1:1,1.5,2];

num=wn^2;

den=[1 2*z*wn wn^2];

step(num,den,t)

hold on

end

hold off

即可得到图2所示相应曲线,图中自动以不同颜色分别显示阻尼比为0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.5、2时的阶跃响应曲线,对比分析性能非常方便。

也可以在SIMULINK中建立二阶系统的模型,类似系统框图的形式,在输入端接阶跃信号模块,输出端接示波器模块,仿真后也可得到系统的响应曲线。

(1)优点:MATLAB软件具有强大的数据处理和图形处理的能力,且编程方法简单易懂,实验结果更加准确直观;对根轨迹等部分在常规实验平台上无法进行的内容可以很容易地进行实验;系统模型用软件实现使得系统结构和参数的修改非常容易;SIMULINK中结构图的模型表示方法与理论教学中一致,加深学生对理论知识的理解;可以自行设计实验项目和实验内容,很方便地进行设计性实验。

(2)缺点:直接用软件编程进行实验,使学生缺乏对实际系统的感性认识。“控制系统仿真”课程往往在“自动控制原理”课程之后开设,学生在实验时对MATLAB语言和环境不熟悉,可能需要花大量时间在MATLAB编程上,而忽略了对实验结果的分析。

4.利用研发的虚拟实验系统进行实验

基于一些仿真功能强大且交互性好的软件(如MATLAB、EWB、LabVIEW等),根据实验项目和实验内容,研发界面友好的虚拟实验系统。学生在研发的虚拟实验系统上进行仿真实验。

同样以典型二阶系统的阶跃响应为例,图3是笔者研发的虚拟实验系统实验界面:

实验界面上显示了典型二阶系统的模拟电路图、系统框图和传递函数,在输入参数面板相应位置输入电阻R1和电容C的值,点击控制面板上的“绘制出曲线”即可在左侧示波器位置显示出响应曲线,系统的相关参数和性能指标同步显示出来。

(1)优点:实验过程简单,学生无需进行编程,根据提示搭建电路或改变参数即可得到实验结果,着重对实验结果的分析,提高了实验效率;实验结果准确直观,响应曲线、根轨迹、Bode图等清晰明了,便于学生对比分析;增设综合性、设计性实验,实验项目更加丰富,学生也可自行设计实验内容,提高学生的创新能力;实验形式更灵活、更开放,突破了时间、空间和实验条件的限制,只要有计算机即可进行实验,学生可自主选择时间和地点。

(2)缺点:学生通过虚拟环境进行实验,不接触实际器件和搭建电路,容易缺乏对控制系统的感性认识;仿真结果在理想情况下进行,实际系统的故障和异常运行情况不能完全反映,学生缺少对实际问题的分析。

二、结论

通过对上述实验方式的比较,传统的模拟实验教学模式可以增加学生对控制系统的感性认识,提高学生的动手能力和分析问题、解决问题的能力;虚拟仿真实验教学模式灵活方便,可以拓展学生的思维,进行更复杂的系统分析,并增加设计性实验项目,提高学生的创新能力。将虚拟仿真实验和物理实验结合起来更有利于提高学生自动控制理论分析设计和计算机仿真与系统调试的综合能力,提高学生的工程实践应用能力。

综合实验成本和实验效果的考虑,多数高校现在采用的是第2种和第3种实验方式配合使用,对简单的环节和系统的阶跃响应实验用第二种实验平台,使学生对实际系统有一个感性的认识,对复杂的高阶系统、根轨迹、系统校正等实验用第三种实验方法,使学生对抽象的理论知识有更深的理解。

从虚拟实验的角度来说,第4种方法要优于第3种方法,可以使不熟悉仿真软件的学生从相对复杂的编程过程中解脱出来,把实验的重心放到系统的分析和设计上。部分高校已经进行了自动控制原理虚拟实验的研究并开发了一些虚拟实验教学系统,但其规范性、通用性和开放性有待改进。对此进行深入研究,设计出界面友好、操作简便、实验项目合理丰富、通用性强的自动控制原理虚拟实验系统,不仅能有效提高自动控制原理课程的实验教学效果,也可以为许多电气电子类课程开设实验提供新的思路。

参考文献:

[1]夏德钤.自动控制理论[M].第3版.北京:机械工业出版社,2007.

[2]肖理庆,李巍.“自动控制原理”实验教学改革[J].电气电子教学学报,2012,(3).

[3]李玉娜,祁伟.自动控制原理课程实验的几种方法[J].中国教育技术装备,2010,(27).

[4]王焕然,徐颖秦.自动控制原理虚拟实验平台的设计与开发[J].电力系统及其自动化学报,2010,(4).