首页 > 范文大全 > 正文

“电磁转换”复习导航

开篇:润墨网以专业的文秘视角,为您筛选了一篇“电磁转换”复习导航范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

一、要点解读

(一)如何判断物体有无磁性

判断物体是否有磁性可以从吸铁性、指向性、磁极间的相互作用规律、磁体的磁性强弱分布特点来进行解答.

1.根据磁体的吸铁性判断.分别将钢棒靠近无磁性的铁类物质,如铁屑、大头针等,若能够吸引,则钢棒有磁性,否则没有磁性.

2.根据磁体的指向性判断.分别将钢棒用细线吊起,使它们能在水平面上自由转动,若静止时总是指示南北方向说明钢棒有磁性,否则没有磁性.

3.根据磁极间的相互作用规律判断.将钢棒的一端靠近静止的小磁针的磁极,若发生排斥现象,则钢棒有磁性;若与小磁针的两极都相互吸引,则没有磁性.

4.根据磁极的磁性最强判断.将A棒、B棒如图1放置,因为条形磁体两端的磁性最强,中间的磁性最弱.如果A、B不吸引,则表示钢棒B有磁性,A没有磁性;如果A、B吸引,则表示钢棒A有磁性,B没有磁性.

(二)如何理解通电螺线管外部的磁场和条形磁铁的磁场一样

理解这个问题时应注意以下两点:

1.对通电螺线管概念的理解要到位

两个原则:①同名磁极相互排斥,异名磁极相互吸引;②右手定则.

三个因素:有三个因素与通电螺线管周围的磁场有关:螺线管的磁极、电流方向及绕线情况.在这三个因素中,任意两个都能决定第三个.

2.对通电螺线管隐含条件的理解要到位

(1)通电螺线管外部的磁感线是从螺线管的北极发出回到南极.其隐含条件是:通电螺线管内部的磁场方向是从螺线管的南极指向北极.

(2)通电螺线管的磁性强弱与电流大小有关.电流越大,螺线管的磁性越强.

(三)如何分析由电磁继电器组成的电路的工作过程

我们可以用“流程图法”(如图2)来解释电磁继电器的工作过程,总的来说可以分五个步骤.如图所示:

注意:控制电路的通断可以是人为接通或断开,也可以是外界条件变化使之自动接通或断开.

(四)磁场为什么会对电流产生力的作用

我们知道磁体的周围有磁场,当磁体跟另一个磁体接近时,它们之间通过磁场发生相互作用;我们还知道电流周围也存在着磁场,我们可以把通电导体看成一个磁体,当通电导体跟磁体接近时,它们之间也通过磁场发生相互作用.因此,磁场对电流的作用,其实质也是磁体和磁体间通过磁场而发生的作用.

(五)感应电流因何而生

1.由电磁感应现象可知,要得到感应电流应同时满足两个条件:(1)电路必须是闭合的;(2)部分导体在磁场中做切割磁感线运动.

2.要想真正地理解感应电流的产生,除掌握上述两个条件外,还要正确认识以下几个问题:

(1)必须是导体正在做切割磁感线运动.如果某部分导体虽然做过切割磁感线运动,但现在处于静止状态,那么该电路中就不会有感应电流,也就是说只有切割磁感线的过程中,才会产生感应电流.

(2)切割磁线时,导体不一定是运动的.“切割”指的导体与磁场的相对运动.磁体不运动,导体运动,如在电磁感应的实验中,导体切割磁感线,有感应电流产生;导体不运动,磁体运动,如对于大型发电机来说,定子是线圈,转子是磁极,这时导体也会切割磁感线,也有会感应电流产生;导体不动,磁体也不动,但是磁体的磁性强弱发生了变化,即产生了变化了磁场,这时也相当于导体切割了磁感线,也会有感应电流产生.

二、例题解析

考点1.磁场与磁感线

考点归纳:(1)磁体、磁现象在生产生活中的应用;(2)磁极间的相互作用的研究和利用;(3)磁场方向的规定,熟知条形、蹄形磁体周围磁感线的分布情况,还要了解放入磁场中的物体各磁极的受力情况.

例1 为了收集实验台上的铁粉,小明用塑料袋包好磁铁吸引铁粉,当磁铁靠近桌面上的铁粉时,出现如图3所示的情况,小明说:“我终于看到了真正的磁感线”.小红用如图4所示的通电线圈去收集铁粉.

(1)根据如图3所示,条形磁铁有

个磁极,铁粉能够一个接着一个吸引排列下去,说明铁粉被 后也具有磁性,相当于小磁体的铁粉靠在一起的磁极一定是 (选填“同名”或“异名”)磁极.

(2)小明的说法中错误的是 .

磁感线显示的是 .

(3)小红所用线圈绕在铁芯上的作用是 ,图4中画出了部分磁感线,则a点的磁场比b点的磁场 (选填“强”或“弱”);根据图中磁感线的方向,标出螺线管的磁极和电源的正负极.

解析 任何磁铁都具有两个磁极,磁极就是磁体上磁性最强的部位,也就是吸引铁粉最多的部位.铁粉本身不具有磁性,被磁化后变为小磁体,各个小磁体的异名磁极相互吸引而连成一串.磁感线是描述磁场的假想曲线,这个曲线的要求是:该曲线每点的切线方向与该点的磁场方向一致,曲线的箭头代表磁场方向,同时磁场方向规定磁体外部从N极出发进入S极,因此电磁铁的左端为S极.而磁感线的疏密程度代表了该点的磁场强度,越密集磁场越强.因此图中b点比a点磁感线密集些,b点比a点的磁场强些.根据右手螺旋定则,大拇指向右指向N极,电流必须从左侧流入,因此电源的左端为正极.

答案 (1)两 磁化 异名

(2)磁感线是假想的曲线,看不见的磁场的方向和强弱

(3)增强磁性 弱 如图5

考点2.电流的磁场及其应用

考点归纳:(1)奥斯特实验的实验方法、步骤和结论,最早做实验者及实验的意义;(2)电流磁场的应用;(3)利用安培定则判断电磁铁的磁极、电源的正负极,并绕制通电螺线管;(4)探究电磁铁的磁性强弱与电流大小、线圈匝数的关系.

例2 如图6所示,试判断通电螺线管的南北极.

解析 由图6可知,在我们看到螺线管的一侧导线中电流方向向上,看不到的一侧电流方向向下.如图7所示,根据安培定则,让右手弯曲的四指指向电流方向,则拇指所指的方向就是通电螺线管的北极,即螺线管的左端为N极,右端为S极.

变式 开关S闭合后,通电螺线管上方小磁针静止时的指向如图8所示,试确定电源的正负极.

解析 由磁场规律知,通电螺线管的左端为S极,右端为N极,根据安培定则得,电源的左端为负极,右端为正极.如图9所示.

点评 本题是母题的逆用,先从小磁针的指向,确定通电螺线管的N、S极,再用安培定则判断螺线管中的电流方向,进而确定电源的正负极.

考点3.电磁继电器

考点归纳:(1)电磁继电器的原理和工作过程;(2)能快速判断各种自动控制电路的原理.

例3 如图10是一种水位自动报警器的原理图,有关该报警器工作情况的下列叙述,不正确的是( ).

A.该报警器红灯是报警灯,报警器工作时,必须依靠一般水的导电性,且水位必须到达A

B.该报警器的红、绿灯不会同时亮

C.当水位没有达到A时,电磁铁没有磁性,只有绿灯亮

D.当该报警器报警时,电磁铁的上端是N极

解析 水、金属块A和B组成了控制电路的“开关”.当水位没有到达A点时,这个“开关”处于断开状态,控制电路中没有电流,电磁铁没有磁性,此时衔铁在弹簧的拉力作用下使动触点与上面的静触点接触,工作电路中的绿灯亮以示安全;当水位到达A点时,控制电路中的“开关”闭合,电路有电流,使得电磁铁具有磁性,从而吸引衔铁使动触点与下面的静触点接触,工作电路中的红灯亮以示危险.根据电磁铁中的电流方向及其绕线方式,运用右手定则易知电磁铁的下端为N极.

答案 D

点评 此题通过一个自动控制电路来考查电磁继电器的应用.分析这类自动控制作用的电磁继电器的工作原理,通常按下面的程序进行:控制无件或开关处于什么状态——控制电路的通断——电磁铁有无磁性——是否吸引衔铁——工作电路的通断.

考点4.电动机与发电机的区别

考点归纳:(1)从制作原理来区分:电动机是利用通电线圈在磁场中受到力的作用而转动的原理制成的;发电机是利用电磁感应现象制成的.

(2)从构造来区分:电动机的构造:主要由磁铁、线圈、换向器和电刷等组成;发电机的构造:主要由磁铁、线圈、铜环和电刷等组成.

(3)从能量转化形式区分:电动机工作时将电能转化为机械能;发电机工作时将机械能转化成电能.

(4)从结构示意图来区分:由以上两图可以看出电动机和发电机模型非常相似,但不难看出两者最显著的区别就是:①电动机外部有电源,通电线圈通过受力而转动(如图11);发电机外部无电源,导体运动产生电流,电流表发生偏转(如图12);②电动机线圈两端连接的滑环是半圆环,发电机线圈两端连接的滑环是圆环.

例4 如图13所示的4个实验装置中,能说明发电机工作原理的是( ).

解析 如图13所示的是教科书上4个重要的演示实验装置.A图是用来演示通电导体周围存在磁场,使小磁针受磁场作用发生偏转的现象的;B图是用来演示开关闭合时,导体ab中通过电流在磁场中受力运动的现象的;C图是用来演示通电线圈在磁场中受力转动现象的,B图和C图都能说明电动机的原理;D图是用来演示开关闭合后导体ab在磁场中做切割磁感线运动时,电路中会产生感应电流的电磁感应现象,是用来说明发电机工作原理的实验装置.

答案 选D.

点评 本题考查对实验现象的观察理解能力,同时考查对电磁现象的综合认识和理解.物理学的发展离不开实验,因此认真做好实验、观察研究实验现象和规律,是学习物理应具备的基本技能.

考点5.发电机应用的探究

考点归纳:电磁感应现象的产生条件

例5 实际的发电机采取线圈不动(称为“定子”)而磁铁运动(称为“转子”)的方式发电,为了增强磁铁的磁性,转子一般不用永磁铁,而用电磁铁代替.小明利用如图14所示的实验装置进行了模拟探究.其中为A电磁铁,B为螺线管(其作用相当于线圈),B与灵敏电流计组成闭合回路.

探究一:闭合开关后,B保持不动,A迅速向下插入B,电流计指针向右偏;A向上拔出时,电流计指针向左偏.

(1)以上操作说明 .

(2)若保持A不动,螺线管B由下向上套住A的过程中,电流计指针应向 偏.

(3)感应电流的大小可能与什么因素有关?

①请说出你的猜想(至少说出两个不同的猜想): ; .

②请你针对其中一个猜想设计实验来验证猜想是否正确.要求说出实验方案.

探究二:将A放在B内并保持不动.闭合开关瞬间,电流计指针偏转;闭合开关一段时间,A中电流稳定后,电流计指针不偏转;移动滑动变阻器的滑动触头,电流计指针偏转;断开开关瞬间,电流计指针偏转.

(4)探究二说明,闭合电路中的磁场 (选填“发生变化”或“不发生变化”)时,就能产生感应电流.

(5)闭合电路中感应电流的大小与磁场强弱变化的快慢有什么关系呢?将放在内保持不动,闭合开关,快速移动滑动变阻器的滑动触头时,电流计的指针偏转角度较大;慢慢移动滑动变阻器的滑动触头时,电流计的指针偏转角度较小.由此可得出结论: .

解析 B保持不动,当A向下或向上运动即切割磁感线运动方向发生改变时,电流计指针偏转方向发生改变即感应电流发生改变,说明感应电流的方向与切割磁感线的运动方向有关.保持A不动,螺线管B由下向上套住A,相当于B保持不动,A向下插入B,根据题设条件可知,此时电流计指针应向右偏.设计验证猜想的实验方案要体现控制变量法.

根据探究二中实验现象可知,当闭合电路中的磁场发生变化时,就能产生感应电流.滑动变阻器滑动触头移动得快,说明闭合电路中的磁场强弱变化得快;滑动变阻器滑动触头移动得慢,说明闭合电路中的磁场强弱变化得慢.所以根据实验现象可知:闭合电路中感应电流的大小与磁场强弱变化的快慢有关,同样的条件,磁场强弱变化得快,产生的感应电流大.

答案 (1)感应电流的方向与切割磁感线的运动方向有关.(2)右.(3)①可能与线圈匝数有关;或可能与磁场强弱有关;或可能与磁铁(或线圈)运动的快慢有关等.②以猜想“感应电流的大小可能与线圈匝数有关”为例设计实验.实验方法:闭合开关后,螺线管B保持不动,A以一定速度向下插入B,读出此时电流计的示数I1;改变螺线管B的线圈匝数,闭合开关后,螺线管B保持不动,A以同样的速度向下插入A,读出此时电流计的示数I2;分析I1、I2的关系得出结论.(4)发生变化.(5)闭合电路中感应电流的大小与磁场强弱变化的快慢有关,同样的条件,磁场强弱变化得快,产生的感应电流大.

点评 本题在新的环境中全方位探究感应电流是如何产生的,考查同学们的知识迁移能力及在新的问题情境中分析、解决问题的能力.