开篇:润墨网以专业的文秘视角,为您筛选了一篇初中数学课堂如何创设问题情境教学范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
【摘 要】所谓问题情境,就是教师提出一系列有梯度的问题活跃学生的思维,激发学生的求知欲望,从而营造强烈的课堂求知气氛。“学贵于思,思源于疑。”问题情境是促进学生建构良好认知结构的推动力,是体验学科知识应用,培养创新精神的重要措施。
【关键词】初中数学 问题情境 有效教学 创新精神
所谓问题情境,指的是一种具有一定困难,需要努力克服(寻求达到目标的途径),而又是力所能及的学习情境(学习任务)。《全日制义务教育数学课程标准》(实验稿)强调人人学有价值的数学,学生的数学学习内容应当是现实的、有意义的、富有挑战性的。在教学中恰当地创设问题情境,可以很好落实这一数学理念。从学生已有的生活经验出发,恰当地创设问题情境,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,可使学生获得数学学习的自信心和兴趣,体会数学与自然、社会、人类生活的联系,让学生在自主探索中建构有价值的数学知识,获得情感、能力、知识的全面发展,从而收到最佳的教学效益。本文拟结合自己的教学实践谈谈初中数学教学中问题情境的创设。
一、问题情境创设要注重直观性
“ 直观是认识的途径,是照亮认识途径的光辉 ”。物体的直观形象本身,能长时间地吸引学生的注意力。直观性是一种发展注意力和思维的力量,能使认识带有情 绪色彩。由于同时能看得见、听得着、感受得到并进行思考,在学生的意识中就形成了情感记忆。如果不形成发达的、丰富的情感记忆,就谈不上有充分的智力发展。如讲授 " 数轴 " 时,利用了温度计来导入新课,在讲授几何课时,更是充分利用了各种模型进行直观教学。创设问题情境,必须充分利用一些半具体半抽象的模型化了的数学材料,多角度、多方位、多形式地提供丰富表象。
二、培养学生发现问题、解决问题的能力
创设悬念,激发兴趣。可以在课的开始或教学过程中,通过设置悬念使学生产生迫切探究的心理,激发求知的欲望,引起学生对即将要学教材的学习兴趣,培养学生独立思考的能力,由于留下了悬念,不仅让学生回味无穷,又为下节课的讲授作了铺垫。创设探究问题的情境。在创新教学活动中,教师创设探究情境,能引起学生认知冲突,产生对所学知识的关切与渴望。通过探究使学生在积极而自信的状态中,不断地发现问题,不断地解决问题,还能把自己发现的结论作为学习的动力,如讲“等腰三角形”一节时,笔者创设了这样一个情境:“一个等腰三角形的玻璃板被弄破了,只留下底边和一角,怎样才能把这块玻璃配好?”一时间,学生的热情高涨,给出了许多答案,经过师生共同努力,这节课收到了意想不到的效果。
三、问题情境创设要具有操作性
为体现知识的形成过程而设计操作型问题情境。在数学教学中,过于强调结论,只能促进学生单纯的模仿和记忆知识,但如果注重知识形成的过程,并引导学生 积极参与其中,则能培养学生尊重客观事物的态度、科学探索知识的能力以及勇于创新的精神。因此,可以说,体验过程比记忆结论更重要。
围绕教学内容创设实际操作情境,让学生人人动手操作或不同角色参与,在解决问题中获取直接经验,建构新知识。这种策略可以为学生提供一个良好的学习环境,使学生在做数学的过程中学习数学知识,实现了数学的 “ 再创造 ”,这有利于学生创造性的发挥在现行课本中存在大量的此类实例,如研究图形的平移、旋转、中心对称,概率中的随机试验,函数图像的画法及性质得出等等,都给学生提供了通过操作掌握有关知识点的问题情境。
四、设计综合实践性问题情境及试误型问题情境
综合实践性问题情境是指,为学生从自然、社会文化和自身生活中根据自己的兴趣选择课题进行自主研究,写出报告或完成作品,最后交流评比的情境。
例如:学习了垂径定理后,结合我地有多座圆弧形石拱桥的条件。指导学生选择以“石拱桥”为题的课题进行研究。要撰写出研究报告,并设计制做圆弧拱桥模型。学生要完成此项研究课题就必须实地考察石拱桥,必须考虑影响建桥的因素,如地质情况、地形情况、水文情况等。必须调研建桥后对交通、环境、经济发展的影响。包含了自然、社会、科学的内容,具有整体性、开放性和科学性。同时,圆弧拱桥的设计要用到所学的几何知识,这样学科知识在探究实践中得到了综合和延伸。
试误型问题情境:学生在理解、应用数学知识和方法的过程中,常因各种原因犯一 些似是而非的错误,适当创设试误型教学情境,可为学生尝试错误提供时间和空间,并通过反思错误的原因,加深对知识、方法的理解和掌握,提高对错误的认识和警戒,培养思维的批判性和严谨性。
五、初中教学中设计问题要注意围绕教学目标,紧扣重难点
问题是教学目标的具体化,教学目标必须问题化,一节课中的主要问题的设计必须围绕本节课的教学目标,紧扣重难点,因而设计数学教学问题时,要进行对比、分析,力求问题和解决问题的方法具有普遍性和典范性,有利于学生对于知识重点和难点的掌握
例如,学习分式基本性质时,可以设计如下问题:
(1)分式 与 相等吗?
(2)你能类比分数的基本性质推出分式的基本性质吗?
这样的问题有利于帮助学生理解和掌握分式的基本性质。同时又有利于培养学生分析、归纳类比的能力。实践证明,围绕教学目标,紧扣重难点设计问题,可以激发学生的主题意识,达到课堂教学效果的最优化。
总之,数学具有高度的抽象性,严密的逻辑性和广泛的应用性,而初中生的思维正处于以具体形象思维为主要形式向以抽象逻辑思维为主要形式逐步过渡的阶段,数学知识的抽象性与学生认识的具体现象之间存在着矛盾,因此,在初中数学教学活动中,应以问题情境为主线,通过创造问题情境来调动学生思维的参与,激发其内驱力,使 学生真正进入学习状态中,达到掌握知识,训练思维和提高实践探究能力的目的。
【参考文献】
[1]付瑶 .浅谈初中数学课堂创设问题情境的教学模式[J].新课程,2012(09)
[2]杨忠银.基于问题情境模式的初中数学教学探讨[J].读写算,2011(27)