首页 > 范文大全 > 正文

功率半导体器件与高压直流输电技术

开篇:润墨网以专业的文秘视角,为您筛选了一篇功率半导体器件与高压直流输电技术范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

[摘 要]高压直流输电技术是电力电子技术在电力系统中应用最早、最成熟的技术。功率半导体器件是电力电子变换器的基础,是推动电力电子变换器发展的源泉,是推动相关领域发展的源动力。本文对功率半导体器件和高压直流输电技术的发展和相互关系进行了阐述,对二者的未来发展进行了展望。

[关键词]功率半导体器件;高压直流输电;电力电子技术

中图分类号:TM72 文献标识码:A 文章编号:1009-914X(2014)17-0241-01

1 引言

功率半导体器件是用于电力设备的电能变换和控制电路方面的大功率电子器件。广泛应用于涉及电力系统的各个方面,涉及发电、输电、配电和用电的各个领域。

高电压、大容量的功率半导体器件的迅速发展,促使高压直流输电技术发生了重大变革,使得高压直流输电系统迅速发展。同时,随着高压直流输电系统的电压等级不断提高,使得各部分装置所承受的电压不断提高,对功率半导体器件的性能提出了更高的要求。本文从功率半导体器件在HVDC中的应用领域和对HVDC发展的影响两方面进行了阐述,从辨证的角度分析二者的关系,对功率器件的发展方向进行了展望。

2 功率半导体器件的发展状况

20世纪80年代中期,4.5kV的GTO得到广泛应用,并成为在接下来的十年内大功率变流器的首选器件,一直到IGBT的阻断电压达到3.3kV之后,才开始改变GTO独占市场的局面。至2005年,以晶闸管为代表的半控型器件已达到7×107W/9000V的水平,全控器件也发展到了十分高的水平。当前,功率半导体器件的水平基本稳定在109~1010WHz左右,已逼近了由于寄生二极管制约而能达到的材料极限。

高品质电能变换所内涵的高耐压、高速、高电流密度、高集成度和低导通电阻等给人们提出不少科学与技术问题,并不断推动着功率半导体的发展。为了使功率半导体器件适应便携式、绿色电源、节能减排的发展需要,功率器件正不断采用新技术,不断改进材料性能或开发新的应用材料、继续优化完善结构设计、制造工艺和封装技术等,提高器件功率集成密度,减少功率损耗。

2.2 功率半导体器件未来发展方向

现代大功率半导体器件正朝以下几个方向发展:[1]

(1)大电流、高耐压:现代电力电子器件正向大电流高压方向发展,以适应高压领域对电力电子器件快速需求的趋势,尤其在高压直流输电、高压电力无功补偿、高压电机、变频器等领域。

(2)高频化:从高压大电流的GTO到高频多功能的IGBT、MOSFET,其频率已从数千HZ到几十KHZ、MHZ。这标志着电力电子技术已进入高频化时代。

(3)集成化、智能化:几乎所有全控型器件都由许多的单元胞管子并联而成(IGBT、GTO)。

功率半导体器件的发展日新月异,HVDC 技术正在不断的进步和成熟,输电容量和电压等级逐渐提高,使其在输电系统中越来越具有竞争力。随着西电东送和全国联网的不断发展,电能质量和电网运行的灵活性和可靠性的要求越来越高,HVDC技术必将得到越来越广泛的应用。为了满足我国轨道交通、智能电网、新能源等国民经济发展重要领域对高压大电流晶闸管、高压大功率IGBT、IGCT等功率半导体器件的强大需求,提升国家电力电子产业的技术水平,2007年南车时代电气投资3.5亿,启动了大尺寸功率半导体器件研发及产业化基地建设。该线采用了世界顶尖级的工艺和测试设备,主要生产6英寸、5英寸高压大电流晶闸管和整流管,满足高压/特高压直流输电项目的需要。

2 功率半导体器件在HVDC中的应用

HVDC在电力系统的应用中,存在着一些固有的缺陷,如不能向无源系统供电、易发生换相失败、需要配置专门的滤波装置、设备投资高、占地面积大等[4],这些问题一直限制着HVDC的发展。20世纪90年代以后,随着电力电子技术的发展,特别是具有可关断能力的新型半导体器件的出现,促进HVDC技术产生了重大变革。

功率半导体器件的发展促使高压直流输电技术不断进步,根据功率半导体器件的更新可将HVDC技术的不同发展阶段进行划分。HVDC发展的第一个25年,由汞弧阀换流技术支撑,到70年代中期为止;第二个25年到2000年为止,这个时期HVDC技术是由基于晶闸管阀的电网换相换流技术支撑;可以预计,在接下来的25年里,强迫换相换流器技术将占主导地位。随着大功率开关器件成本的不断降低,电容换相换流器将会被自换相换流器所取代。

2.1 功率器件的在换流器中的应用

HVDC系统的主要设备包括换流装置、换流变压器、平波电抗器、滤波器、电线路、接地极、无功补偿装置、控制保护系统。其中换流装置、换流变压器、有源滤波器、无功补偿装置、控制保护系统等都是以功率半导体器件为基础。早期的大功率换流器,几乎都是基于晶闸管的。换流器可以将电能进行交-直、直-交转换,分为两种基本结构类型:电流源型换流器CSC和电压源型换流器VSC。

2.3 轻型直流输电技术

随着大功率GTO和IGBT开关的商业化,在过去的10年里,VSC的应用范围也不断扩大。采用大功率IGBT开关,VSC的额定值在双极性结构下可以达到约±150kV、3000MW,且VSC可以与弱交流系统甚至无源网络连接。HVDC light采用基于脉宽调制技术的控制方法,能灵活独立的控制有功和无功功率,并能限制低次谐波,使滤波系统简化,保证高水平的电能质量,同时使换流站更加紧凑,投资减少。但是,需要看到技术的更新不可能十全十美,必然伴随着新问题。

功率半导体器件的使用必然会带来谐波问题,而且IGBT硅的有效面积利用率低、损坏后会造成开路等缺点局限了其在高压直流输电系统中的应用。

与其它应用领域相比,HVDC技术随着其电压等级的不断提高对功率半导体器件的性能提出了更高的要求,如大容量、高耐压、高可靠性、低损耗等。使得功率半导体器件不得不采用器件串、并联技术和复杂的电路拓扑来达到实际应用的要求,导致装置的故障率和成本大大增加。可以看出一方面功率半导体器件促进了HVDC技术的发展,另一方面HVDC系统的正常运行与功率半导体器件的某些特性密切相关。对于高输入电压器件的研制,国内外许多器件工艺厂商都投入了大量的人力物力,控制技术领域也在研究对单个器件进行串并联或进行模块化。虽然这两种方法可以大幅度提高功率半导体器件的耐压、容量等性能,但综合结果并不尽如人意,仍需要研究人员继续努力。

3 总结

功率半导体器件的发展促进了高压直流输电技术的发生了重大变革,同时随着高压直流系统电源等级的不断提高也对功率半导体器件的性能提出了更高的要求,指引功率半导体器件向着高耐压、大电流、大容量、低损耗的方向发展。功率器件在不断改进的过程中出现了许多新问题,这将是未来功率器件发展面临的挑战。随着科技的不断进步这些问题将会得到解决,这样会进一步促进高压直流输电技术的进步。

参考文献

[1] 袁立强,赵争鸣,宋高升,王正元.电力半导体器件原理与应用[M].机械工业出版社,2011.

[2] 钱照明,盛况.大功率半导体器件的发展与展望[J].大功率变流技术,2010,1:1~9.

[3] 孙伟锋,张波,肖胜安,苏巍,成建兵.功率半导体器件与功率集成技术的发展现状及展望.中国科学:信息科学,2012,42(12):1616~1630.

[4] 韩民晓.高压直流输电原理与运行[M].电力电子新技术系列图书出版社,2009.

[5] 盛况,郭清,张军明,钱照明.碳化硅电力电子器件在电力系统的应用展望[J].中国电机工程学报,2012,32(32):1~ 8.

[6] 严行一.中国大功率半导体器件市场前景分析[J].中国电子商情 -基础电子,2009(9):21-24.