首页 > 范文大全 > 正文

谈控制理论与控制工程的发展与应用

开篇:润墨网以专业的文秘视角,为您筛选了一篇谈控制理论与控制工程的发展与应用范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:现代化科学技术及计算机技术的高速发展,推动着控制理论的理论基础及具体方法的不断完善,而将控制理论及控制工程科学的应用于各个生活及生产领域的迫切性也日渐凸显,使得控制理论与控制工程也在不断的具体应用中获得着更为全面和系统化的发展。将控制理论与控制工程有效的应用于多种问题的解决中,已成为科研人员进行难点课题突破及重要问题解决的关键手段。

关键词:控制理论与控制工程 发展与应用

中图分类号:TP13 文献标识码:A 文章编号:1674-098X(2013)02(a)-0066-01

于20世纪产生的相对论、量子理论及控制理论被人们认为是三项重要的科学革命,人们借助该三项理论实现着客观世界认识上的飞跃。随着控制理论与控制工程相关的理论研究工作的深入开展,其研究对象及应用领域也发生着重大的变化,就我国的教育部所进行的学科的设置及分类中,将控制理论及控制工程设置为控制科学与工程下的二级学科,学科核心便是控制理论,推动着我国控制理论与控制工程在科学研究领域的发展。

1 控制理论与控制工程的产生及发展

控制理论作为对社会发展具有重要影响意义的学科,其产生起源可上溯至十八世纪发生在英国的技术革命中,瓦特在蒸汽机的发明之后,将离心式非锤调速器的相关控制原理应用于蒸汽机转速的控制中,开创出以蒸汽作为原动力的机械化格局,而之后的工程界逐渐的将控制理论应用于调速系统稳定性的研究中,通信技术和信息处理技术的高速发展,使得电气工程师们不断的研究出更为科学全面的控制系统分析方法,实现了控制系统的条件稳定性及开环不稳定性的分析研究,而控制理论的创始人于1948年所发表的控制理论的相关著作,就控制理论的相关方法所进行得阐述,推动反馈概念的应用并为控制理论的形成奠定下坚实的基础。

在科技的不断生产发展中,基于控制理论与控制工程的控制技术也在不断的完善,尤其是在计算机技术的不断推动之下,控制理论与控制工程拥有着更深入的发展。就控制理论与控制工程的整体发展历程而言,可大体上划分为三个主要的阶段,其中第一阶段为20世纪的40至60年代,是古典控制理论的形成及发展时期,主要进行进行单输入及单输出问题的解决,多采用以频率特性、传递函数及根轨迹等作为基础的频域分析法进行系统的研究,而主要进行研究的系统是线性的定长系统,进行非线性系统分析的过程中所选用的相平面法要求变量不能超出两个,该控制理论可实现生产过程中的多种单输入单输出类问题的有效解决。第二个阶段为20世纪60年代到70年代的现代控制理论的形成与发展阶段,该阶段已经步入空间技术时期,控制工程也向性能更高的方向上发展,数字计算机的配合应用,实现了分析设计及实施控制,但时变、多输出多输入及非线性等较为复杂的系统控制内容使古典控制理论呈现出局限性,而最优控制方法在该阶段中提出,使现代控制理论更为完善。第三个阶段是20世纪70年代到目前为止的大系统控制理论及智能控制理论时期,其中大系统控制理论是控制理论就广度上的扩展,利用控制及信息的相关观点进行大系统其结构方案及总体设计,进行的是分解方法及协调处理的相关基础性技术理论的研究;智能控制理论是控制理论就深度上的扩展,进行人类智能化活动、控制信息传递的规律等的研究,并就仿智能化的工程控制系统及信息处理系统等进行研制。

2 控制理论与控制工程的应用

在进入21世纪以来,以计算机技术、通信技术及控制技术为典型代表的IT产业的发展及普及中,核心是计算机技术,关键是通信技术,而基础是控制技术,使得控制学科逐渐的发展成为基础性的科学,控制系统与控制工程中的系统结构、系统稳定、反馈调节及智能系统的相关思想及理论,在自然学科下的多种科学领域获取广泛应用的同时,在人文等学科中也有着广泛的应用体现,基于该现象,某些专家甚至指出控制理论与控制工程已不再是单纯的学科,已逐渐的发展成为较为全面和系统的世界观、方法论。控制理论与控制工程所具有的显著特点是,某些基本的概念同时具有着普适性及独特性。在控制理论与控制工程的应用中,两个概念是应用的关键及核心,首先是系统概念的应用,在当前社会的发展中系统问题已变得非常重要和突出,尤其是全社会范围内所进行的复杂性系统及复杂性科学课题的研究及应用,这是控制理论在现代科学中应用的必然发展,应用控制理论不仅要进行结构及性质的分析,还要进行系统运行状态的调控;其次是反馈概念的应用,这是控制理论区别于其他的学科及控制理论的应用区别于其他的理论应用的关键,反馈使得控制系统在较大的程度上具备人类智能的诸多特点,可以实现控制系统在实际的应用过程中结构、参数及扰动等因素的不确定性给控制系统造成的影响,例如远距离通讯设备、进行隧道扫描的显微镜等具体的工程设备。

在控制理论与控制公工程的应用中,最优控制是现代化的控制理论非常核心的内容,利用最优控制所进行的研究是在满足相应的约束条件时,就最优控制策略进行寻求,进而取得性能指标的极大值或者是极小值,最终使控制系统在性能指标上可取得最优化效果所必须采用的基本条件及综合方法,即就受控的运动过程或动力学系统,从多个可选择的控制方案中寻求最佳的方案,从而使系统在运动状态由初始状态变为指定的目标状态时可以取得性能指标的最优化。在控制理论与控制工程的应用中,较为典型的两个标志性的研究方法便是PDI控制器及Kalman滤波器,这两个方法已经被成功的广泛应用于较多的实际系统中,但所开展的系统的稳定性及最优性都是就线性模型的证明,实际上这两种方法还可应用于一大类非线性系统的证明,相关的研究人员利用基于控制理论与控制系统的反馈机制所进行的定量研究工作就是围绕着这两种标志性方法。在现实生活中控制理论及控制工程最为典型的应用便是水槽内水位的控制及电加热器中的温度控制,该典型应用中的自动控制是利用自动化的高度及温度测试仪等进行预期的测控目标的实现。自动控制系统是为实现控制目标由被控制对象及自动化的仪表所组成的闭环系统,控制系统按照结构形式可分为开环控制系统、闭环控制系统及复合控制系统,三类不同的系统在具体的需求下都有着广泛的应用。

3 结语

控制理论及控制工程随着理论及支撑技术的不断完善,逐渐的由工农业及交通运输等较为传统的产业,向生物、信息、通讯、管理等较为新颖的产业中延伸,也必将在社会的发展中获取更广泛的应用。

参考文献

[1]王成红,宋苏,刘允刚.国家自然科学基金与我国控制理论与控制工程学科的发展[J].中国基础科学,2010(6).

[2]郭雷.关于控制理论发展的某些思考[J].系统科学与数学,2011(9).

[3]马继红,马凯.控制理论与控制工程的发展与应用[J].邯郸职业技术学院学报,2008(4).