首页 > 范文大全 > 正文

硅藻硅质壳氧化锌纳米材料的制备与表征

开篇:润墨网以专业的文秘视角,为您筛选了一篇硅藻硅质壳氧化锌纳米材料的制备与表征范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘 要:建立溶液配位反应-沉淀反应多重平衡合成前驱体的方法,成功合成了基于海洋硅藻硅质壳三维多孔状结构的氧化锌纳米材料,并使用扫描电子显微镜(FESEM)、透射电子显微镜及能谱仪(TEM-EDS)、傅里叶变换红外光谱仪(FT-IR)对其进行了表征。同时,对硅藻硅质壳结构氧化锌纳米材料进行了发光性能的分析和比较研究。结果表明硅藻硅质壳模板合成后的氧化锌材料在蓝绿光可见区(400~550 nm)有光致发光效应,与模板合成前相比光致发光性能上提高了14.55%。

关键词:氧化锌 硅藻硅质壳 纳米材料 光致发光

中图分类号:TB34 文献标识码:A 文章编号:1672-3791(2013)02(b)-0005-04

硅藻(diatom)是一类单细胞真核浮游植物,生产了40%~45%的海洋初级生产力[1]和20%~25%的世界初级生产力[2],现存200多个属、超过105个物种[3]。硅藻具有因种而异的刚性细胞壁结构,称为硅质壳(frustule),其在纳米至微米尺度上表现出的规律性和重现性,使得硅质壳具有了非常好的韧性、传输率和高比表面积等性质。

硅藻硅质壳纳米材料因其奇特、复杂的结构而具有应用价值[4~6],但硅质壳固有的氧化硅(silica)组成限制了其应用范围,因此,在维持硅藻硅质壳三维纳米结构的形态、结构不发生改变的情况下,将其主要成分二氧化硅转化为其他的具有应用前景的材料成分成为了关键的一步。目前,在硅藻硅质壳的化学修饰方面已有大量的研究,主要集中在生物光电子、生物矿化、微流体、药物载体、生物传感器等领域[7~15]。从报道中来看,所得新纳米材料的种类和方法仍有很大的研究空间。

纳米氧化锌作为一种新型多功能无机材料,物理化学性质稳定,氧化活性高且廉价易得。纳米级ZnO具有表面效应、量子尺寸效应和小尺寸效应等,与普通ZnO相比,表现出许多特殊的性质[16~18],特别是纳米ZnO由于宽的带隙和丰富的缺陷能级,在受到外界激发时,能发射出从紫外到可见光范围的许多不同波长的荧光。

在这里,我们建立基于硅藻硅质壳结构的纳米材料合成新方法,以硅藻硅质壳为模板,建立配位反应-沉淀反应多重平衡合成法,可控合成三维结构的氧化锌纳米材料,并探讨其光学性能。

1 实验部分

1.1 主要实验仪器与试剂材料

主要实验仪器:JSM-6700F冷场发射扫描电子显微镜(JEOL,Japan);JEM-2100透射电子显微镜(200 kV)(JEOL,Japan);Nicolet 380 FT-IR傅立叶变换红外光谱仪(Thermo Fisher Scientific America,USA);F-4600荧光分光光度计(Hitachi,Japan);LDZX-50KBS立式压力蒸汽灭菌器(上海申安医疗器械厂);箱式电阻炉SX25-12(龙口市电炉制造厂)。

主要试剂材料:六水合硝酸锌(AR);碳酸铵(AR);30%过氧化氢(AR);无水乙醇(AR);氨水(AR);硫酸(AR);盐酸(AR)。

F/2营养液:根据F/2营养液配方,依次取氮、磷、硅、微量元素储备液1 ml,维生素储备液0.5 ml,加入1 L的过滤灭菌海水中,即得F/2营养液。

实验所用的圆筛藻(Coscinodiscus sp.)由中国海洋大学海洋污染生态化学实验室的藻种室提供。

1.2 硅藻的培养及硅质壳结构的提取

硅藻的培养:在光照培养箱内采用实验室单种一次培养法培养。具体培养条件为:将圆筛藻(Coscinodiscus sp.)接入新鲜的培养液中,在温度20 ℃±1 ℃,明暗周期12 h白/12 h黑,光源为白色日光灯,光照强度约为4000Lux的环境中培养。每日摇动2~3次,藻种生长到指数生长期后重新接种,如此反复2~3次,此时藻种状态良好,用于实验。

硅质壳的提取:将圆筛藻液在低速大容量离心机中以3000 r·min-1的速度离心得到圆筛藻余液,加入30wt%过氧化氢和2 mol·L-1的盐酸,在暗处放置反应48 h,分别用二次水和无水乙醇洗涤两次,离心,置于真空干燥箱在130 ℃下干燥3 h。

1.3 硅藻硅质壳结构氧化锌纳米材料的模板合成—— 配位反应-沉淀反应多重平衡合成法

配制溶液:配制0.2 mol·L-1的Zn(NO3)2溶液和1 mol·L-1的(NH4)2CO3溶液。

准确称取硅质壳材料0.024 g,加入30 ml蒸馏水中,充分搅拌直至硅质壳材料分散均匀。加入0.2 mol·L-1Zn(NO3)2溶液2.00 ml,缓慢滴加1 mol·L-1的(NH4)2CO3溶液。加入一定量的氨水,直至产生的沉淀刚好消失为止。将烧杯置于80 ℃恒温水浴中,固定中速搅拌,进行水解反应。将反应液转移至抽滤漏斗中分离,并分别用蒸馏水和无水乙醇各洗涤所得沉淀两次,得到前驱体。将前驱体置入箱式电阻炉中,升温至450 ℃,保温4 h,得到硅质壳结构氧化锌纳米材料。

1.4 硅藻硅质壳结构氧化锌纳米材料的表征

1.4.1 扫描电子显微镜分析

取定量硅质壳材料、硅藻硅质壳结构氧化锌纳米材料进行冷场发射扫描电子显微镜分析,考察材料的表面形貌。

1.4.2 透射电子显微镜及自带能谱仪分析

取定量硅质壳材料、硅藻硅质壳结构氧化锌纳米材料进行透射电子显微镜及自带能谱仪分析,考察材料的表面形貌与元素分布情况。

1.4.3 傅立叶变换红外光谱仪分析

取定量硅质壳材料、硅藻硅质壳结构氧化锌纳米材料进行傅立叶变换红外光谱仪分析,考察材料的组成。

1.5 圆筛藻硅质壳结构氧化锌纳米材料的发光性能实验

以相同方法制得不含硅质壳的氧化锌材料。

取定量硅藻硅质壳结构氧化锌纳米材料、不含硅藻硅质壳的氧化锌材料放入F-4600荧光光谱仪的固体支架中,将数据模式选为Luminescence,狭缝宽度选为5.0 nm,固定激发波长为300.0,扫描发射光谱。

2 实验结果与讨论

2.1 硅藻硅质壳结构氧化锌纳米材料的电镜分析

如图1所示,一系列电子显微镜对比图片表明了氧化锌在圆筛藻硅质壳表面的分布情况。圆筛藻硅质壳壳面的平均直径约为90 m(图1-a),其表面呈现出一种三维纳米蜂窝状多级孔结构(图1-b~1-e)。其中,孔较大的一级微孔平均直径约1.2 m(图1-b~1-d);孔径相对较小的一级结构其平均直径大约为150~200 nm(图1-c);从透射电镜图片上孔径最小的一级结构的轮廓,可判断出其微孔的平均直径约为70~80 nm(图1-e)。通过配位反应-沉淀反应多重平衡合成法合成前驱体得到了均匀的硅藻硅质壳结构氧化锌纳米材料(图1-f),壳面的ZnO纳米粒子呈针状有序排布,平均长度200 nm(图1-g)。透射电子显微镜图片(图1-h~1-k)给出了氧化锌在圆筛藻硅质壳结构的各级微孔中的分布情况。在圆筛藻硅质壳壳面的二级微孔结构中,氧化锌纳米粒子颗粒的平均直径可达到约为5 nm(图1-j)。

2.2 硅藻硅质壳结构氧化锌纳米材料的能谱分析

图2给出了圆筛藻硅质壳结构与硅质壳氧化锌纳米材料的能谱分析结果的对比图,其中铜元素的能谱峰来自测试用的能谱仪放置样品的铜网支架。从对比图中可以看出,圆筛藻硅质壳结构的主要元素组成为硅和氧,而圆筛藻硅质壳结构氧化锌纳米材料中硅和锌的原子百分比例约为2.23∶1。

2.3 硅藻硅质壳结构氧化锌纳米材料的红外光谱分析

如图3所示,圆筛藻硅质壳结构及圆筛藻硅质壳结构氧化锌纳米材料的红外光谱对比图清楚的显示了模板反应前后材料在结构组成上的改变。对于硅质壳结构本身的特征峰来说,470~806 cm-1处为硅质壳结构中Si-O-Si基团的弯曲振动吸收峰,1095 cm-1处为Si-O-Si基团的伸缩振动吸收峰。3000~3750 cm-1处的宽吸收峰为O-H基团的伸缩振动吸收峰,在这里是既包括硅质壳结构表面吸附的水、表面结晶水中的羟基的伸缩振动吸收峰,也包括H-O-Si基团中的羟基的伸缩振动吸收峰。从红外谱图中Si-O-Si基团和Si-OH基团的红外吸收峰的强度来看,圆筛藻硅质壳表面的Si-O-Si基团在数量上占有优势,是圆筛藻硅质壳结构表面所具有的主要的基团。而圆筛藻硅质壳结构氧化锌纳米材料的红外光谱则显示Si-O-Si基团和Si-OH基团的几处红外吸收峰都有了一定程度上的减弱,表明氧化锌在圆筛藻硅质壳表面可能与Si-O-Si基团以及Si-OH基团发生了化学反应。

2.4 硅藻硅质壳结构氧化锌纳米材料的发光性能与比较分析

图4所给出的是圆筛藻硅质壳结构氧化锌纳米材料与同一条件合成的不含圆筛藻硅质壳结构的氧化锌材料在300.0 nm的激发波长下的光致发光光谱对比图。从对比图中可以看出,以上圆筛藻硅质壳结构氧化锌纳米材料与同一条件合成的不含圆筛藻硅质壳结构的氧化锌材料在400~550 nm的发射光范围内的蓝绿可见光区均有宽而强的发射峰,但是圆筛藻硅质壳结构氧化锌纳米材料的发射光强度比同一条件合成的不含圆筛藻硅质壳结构的氧化锌材料的发射光强度要高出14.55%。

3 结论

(1)建立了利用溶液配位反应-沉淀反应多重平衡合成前驱体的方法,成功合成了硅质壳结构氧化锌纳米材料,电子显微镜表征的结果表明氧化锌在圆筛藻硅质壳表面均匀附着,壳面上的氧化锌纳米针状物平均长度200 nm,多级微孔结构内的氧化锌纳米粒子平均直径5 nm,能谱分析结果表明,圆筛藻硅质壳结构氧化锌纳米材料中硅和锌的原子比约为2.23∶1,红外光谱分析结果表明,氧化锌与圆筛藻硅质壳表面的部分Si-O-Si和Si-OH特征基团发生化学反应。

(2)对比相同条件下制备的不含硅藻硅质壳的氧化锌材料,对硅藻硅质壳结构氧化锌纳米材料进行了发光性能的分析和比较研究,结果表明经硅藻硅质壳模板合成后的氧化锌材料在光致发光性能上提高了14.55%。

参考文献

[1] Mann D G.The Species Concept in Diatoms[J].Phycologia,1999,38(6): 437-495.

[2] Werner D.the Biology of Diatoms[M].Blackwell Scientific Publications, Oxford,1977,ch.1,pp.1-17.

[3] Mann D G,Droop S J M. Biodiversity, Biogeography and Conservation of Diatoms[J].Hydrobiologia,1996,336(1-3):19-32.

[4] Lettieri S, Setaro A, De Stefano L,etc.The Gas-detection Properties of Light-emitting Diatoms[J].Advanced Functional Materials,2008,18(8):1257-1264.

[5] Setaro A,Lettieri S,Maddalena P,etc.Highly Sensitive Optochemical Gas Detection by Luminescent Marine Diatoms[J].Applied Physics Letters,2007,91(5):051921.

[6] Bismuto A,Setaro A,Maddalena P, etc. Marine Diatoms as Optical Chemical Sensors:A Time-resolved Study[J].Sensors and Actuators B:Chemical,2008, 130(1):396-399.

[7] Unocic R R,Zalar F M,Sarosi P M, etc. Anatase Assemblies from Algae: Coupling Biological Self-assembly of 3-D Nanoparticle Structures with Synthetic reaction Chemistry[J].Chemical Communications,2004:796-797.

[8] Bao Z, Weatherspoon M R, Shian S,etc.Chemical Reduction of Three-dimensional Silica Micro-assemblies into Microporous Silicon Replicas[J].Nature, 2007,446:172-175.

[9] Bao Z,Ernst E M,Yoo S,etc.Syntheses of Porous Self-supporting Metal-nanoparticle Assemblies with 3D Morphologies Inherited from Biosilica Templates (Diatom Frustules)[J].Advanced Materials,2009,21(4):474-478.

[10] Weatherspoon M R,Allan S M,Hunt E, etc. Sol-gel Synthesis on Self-replicating Single-cell Scaffolds:Applying Complex Chemistries to Nature’s 3-D Nanostructured Templates[J].Chemical Communications,2005:651-653.

[11] Kusari U,Bao Z,Cai Y,etc. Formation of Nanostructured, Nanocrystalline Boron Nitride Micropa rticles with Diatom-derived 3-D Shapes[J].Chemical Communications,2007:1177-1179.

[12] Wang G J,Fang Y,KimP,etc.Layer-by-layer Dendritic Growth of Hyperbranched Thin Films for Surface Sol-gel Syntheses of Conformal, Functional,Nanocrystalline Oxide Coatings on Complex 3-D (bio)silica Templates[J].Advanced Functional Materials,2009,19(17):2768-2776.

[13] Losic D,Mitchell J G,Voelcker N plex Gold Nanostructures Derived by Templating from Diatom Frustules[J].Chemical Communications,2005:4905-4907.

[14] Pérez-Cabero M,Puchol V, Beltrán D, etc. Thalassiosirapseudonana Diatom as Biotemplate to Produce a Macroporous Ordered Carbon-rich Material[J].Carbon,2008,46(2):297-304.

[15] Zhou H,Fan T,Li X, etc.Bio-inspired Bottom-up Assembly of Diatom-templated Ordered Porous Metal ChalcogenideMeso / nanostructures[J].European Journal of Inorganic Chemistry,2009(2):211-215.

[16] Pan Z W,Dai Z R,Wang Z L. Nanobelts of Semiconducting Oxides[J].Science,2001,291(5510):1947-1949.

[17] Muhr H J,Krumeich F,Schonholzer U P,etc.Vanadium Oxide Nanotubes —A New Flexible Vanadate Nanophase[J].Advanced Materials,2000,12(3):231-234.

[18] Polarz S, Neues F,Van den Berg MWE, etc.Mesosynthesis of ZnO-silica Composites for Methanol Nanocatalysis[J]. Journal of the American Chemical Society,2005,127(34):12028-12045.