开篇:润墨网以专业的文秘视角,为您筛选了一篇磷酸钙在骨组织工程中作为药物和生长因子载体的研究进展范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
【摘要】磷酸钙与骨矿物质的组成成分相似且具有良好的生物相容性,在骨组织工程被广泛用于骨替代品。本文对磷酸钙骨水泥和支架材料作为目前常用药物和生长因子的载体在骨科和口腔科领域的应用进行综述。
【关键词】磷酸钙;支架材料;载体
文章编号:1004-7484(2013)-01-0480-02
在骨组织工程中,药品这个词不仅包括抗生素和抗炎药物,还包括生长因子,具有生物活性的蛋白质,酶,非病毒基因(DNAs,RNAs)等物质,在组织工程中应用不同药物的目的是加速植入生物材料骨诱导愈合过程。作为药物的载体,这种物质必须具有良好的生物相容性,可以和骨组织结合,具有骨传导性和骨诱导性,在靶器官部位被逐渐吸收由新骨组织代替[1]。磷酸钙可以很好地满足这些条件,所以这种材料有希望成为骨骼系统理想的药物载体。成骨活性是骨组织非常重要的属性,虽然磷酸钙没有成骨活性,但是已有学者证明,加入生长因子,具有生物活性的蛋白质或成骨药物的磷酸钙生物材料具有成骨活性。与其他陶瓷相比,磷酸钙由于有良好的生物相容性和生物降解性而应用于骨科和口腔科。本文主要探讨采用磷酸钙涂层,骨水泥和支架材料作为目前常用药物和生长因子的载体在骨科和口腔科领域的应用。
1磷酸钙支架材料作为生长因子的载体
人们将支架定义为:一个能为生长的细胞和组织提供机械支持,使细胞内和细胞外基质相互作用的结构。在理想的情况下,支架材料在新生成的组织占据空间后会降解消失,这些磷酸钙支架材料的降解速度取决于不同类型磷酸钙的溶解度。支架的孔隙可以有两种类型:大孔(孔径>50μm)和微孔(孔径
人体骨组织由无机-有机成分复合构建而成,所以人们常常应用磷酸钙与有机高分子聚合物聚合,从而提高磷酸钙陶瓷聚合物支架材料的机械性能,磷酸钙支架表面的有机聚合物涂层可以改善其脆性和提高强度。在载药过程中,聚合物涂层还有利于陶瓷支架的表面药物吸收以及控制药物的释放。有时,药物也会浸润到聚合物涂层表面,最近人们越来越关注聚合物涂层亲水性官能团,它能与药物更好地结合,并与药物形成共价键。Kim等人,用羟基磷灰(HA)石粉末和聚己内酯(PCL)的混合物,通过聚氨酯网状发泡的方法,制成了孔隙率为150–200μm,孔隙度为87%的羟基磷灰石聚合物涂层支架材料。药物的释放依赖于支架涂层材料的溶解,而溶出率主要取决于HA/PCL比率。人们发现,随着涂层溶液浓度的增加,药物释放的百分比呈下降趋势,在PBS中最初的2小时,被载的药物约20-30%释放,根据涂层组成成分的不同,在7天时间里约40-60%的药物释放。还有学者指出,随着孔隙度百分比的增加,抗压强度随之下降,而随着PCL浓度的增加,抗压强度随之增加。
组织工程中所用的支架材料的建筑性能与生物和机械性能一样,也非常重要。支架的3-D互连孔必不可少,他可以更好地促进细胞粘附、宿主组织和支架材料间的机械连锁、养分和代谢废物的运输。支架材料要有足够的强度,来承担体内的压力,在新骨代替可降解生物材料之前在靶作用点承担压力。支架可以有微孔或大孔,或两者兼而有之。药物释放主要取决于磷酸钙和药物以及周围环境之间的化学和静电作用。当药物分子和磷酸钙之间有相互作用时,药物的释放还取决于磷酸钙的溶解度/降解率。药物或蛋白质分子也可以浸润到聚合物涂层内。磷酸钙支架聚合涂层的药物释放也取决于药物分子在聚合物涂层上的扩散和降解、百分比孔隙率、孔径、固有的微孔的存在、孔径互联率,所有这些因素可能对药物的吸附率和释放行为有重要影响。Kundu发现,药物吸收率随着表面积和百分孔隙率的增加而增加。人们观察了许多情况下的释放,发现百分孔隙率高的样品释放率也高。与低体积分数孔隙和孔隙尺寸小的样品相比,高体积分数孔隙和孔隙大的样品药物释放的速度更快。
2磷酸钙骨水泥(CPC)作为药物的载体
在20世纪80年代,LeGeros、Brown和Chow介绍了磷酸钙骨水泥的制作方法。CPC是指半固态或膏状的磷酸钙形成固体磷酸钙。半固态或膏状的磷灰石是由磷酸钙骨水泥粉末和水泥溶液混合制成的。CPC粉末是由两种或两种以上的磷酸钙混合而成,而液体只能是水或者水溶液。CPC的可注入性使它可以完全适合于骨缺损和骨腔。CPCs的另一个重要的功能是,他可以在体内较低的温度自我凝结而不损伤任何周围组织。此外,CPCs也可以用于不同骨骼疾病的靶作用点给药,如骨肿瘤,骨质疏松症或骨髓炎。利用CPC将药物递送到靶部位,可长时间保持有效药物浓度,为临床治疗骨疾病开辟了新的治疗途径。由于CPC有较高的微孔结构,因此可以将药物纳入到材料中。药物既可以引入到液态又可以引入到固相的CPC,但我们应该注意,在CPC凝固和发生反应时药物和蛋白质的物理和化学性质是不应该改变的,将不同种类的药物,包括抗生素,抗癌药物,生长因子,蛋白质/氨基酸,抗菌肽(AMPS),用不同的方法纳入到CPC中,人们发现,阿仑膦酸钠(AD)可以影响CPC基质的凝结时间、抗压强度、药物释放动力和生物学活性。将顺铂和咖啡因一同加入到CPC中,由于咖啡因的持续释放,可以延长抗肿瘤的活性,这样顺铂可以进一步抑制由肿瘤细胞增殖带来的破坏。咖啡因作为一种抗癌药物,可以增强对骨与软组织肿瘤的细胞杀伤。
通常情况下,药物的纳入可能使CPC的机械性能恶化。Alkhraisat等人发现加入盐酸强力霉素(DOXY-h)(一种抗生素,常用于牙科击败牙周致病菌)可以使CPC最终凝结时间增加,拉伸强度下降。Ratier等人在将磷酸钙与盐酸四环素结合后再纳入到CPC上,一定程度上解决了这一限制。尽管CPC有优异的骨传导性和方便的适用性,但是将其用于载药还是受到限制的。CPC使用的局限性主要是由于载入药品的浓度和生物利用度的改变而使其最终活性的改变。另外,由于磷酸钙的机械性能很弱,人们常常在其中加入聚合物来增加其机械性能,控制其退化。
药物释放动力学,受到药物的理化性质影响如溶解度和化学性质,也受到CPC的微观结构,结晶度,密度的影响。CPCs的降解行为以及药物和骨水泥的相互作用通常在水化和凝结的过程中发生变化。如果一种药物应用于CPC,那么他的释放动力学还取决于其分子量,溶解度,降解率,药物和聚合物间的相互作用。
3结束语
综上所述,在生理条件下,磷酸钙的化学性质与部分无机骨相似,因此它具有良好的生物活性和生物相容性,而且是非免疫原性的。他们通常以涂层和支架的形式应用于靶作用点给药。虽然,在过去十年我们目睹了陶瓷系统中不同的给药方法的突出进展,但是许多科学和技术的挑战依然有待解决。由于我们对植入物和周围宿主骨组织界面的微环境有了进一步的了解,这就要求我们开发出更有效的治疗骨骼疾病的药物。我们这里讨论的磷酸钙为基础的药物运输系统,是磷酸钙作为药物和生长因子的运载工具来治疗不同的骨骼肌肉紊乱和疾病。这方面未来发展需要关注的挑战和问题也是本文一再强调的问题。我们相信在不久的将来,新的和改进的方法可以解决现有的限制,并将为磷酸钙的可适用性开辟新的途径。成功的做法是在微米和纳米水平进行更精确的研究,进行多学科基础知识的学习,如化学基础,工程学以及动物的深入研究,从而开发以磷酸钙为基础的药物运输系统。
参考文献
[1]Bose S,Tarafder S,Edgington J,Calcium phosphate ceramics in drug delivery. JOM,2011,63:93–8.
[2]Zhu X et al. A facile method for preparation of gold nanoparticles with high
SERS ef?ciency in the presence of inositol hexaphosphate. J Colloid Interface
Sci,2010,342:571–4.
[3]Polak SJ,Levengood SKL,Wheeler MB,Analysis of the roles of microporosity and BMP-2 on multiple measures of bone regeneration and healing in calcium phosphate scaffolds. Acta Biomater,2011,7:1760–71.