开篇:润墨网以专业的文秘视角,为您筛选了一篇同位素电池材料范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘 要:同位素电池以结构紧凑,能量密度大,不受外界环境影响,使用寿命长等优点,在航空、医学和民用等领域得到广泛的应用,是一种前景广阔的新能源电池。本文以直接充电式、温差式和辐射伏特效应同位素电池三种重要的同位素电池为例对同位素电池的放射性同位素热源和能量转换材料分别进行详细的介绍。
关键词:同位素电池 核电池 氚电池 能量转换
中图分类号:TM911 文献标识码:A 文章编号:1674-098X(2014)05(a)-0215-02
同位素电池,又被称作核电池,它是利用放射性同位素衰变时放射出来的载能粒子(比如α粒子、β粒子或γ光子) 与物质相互作用,粒子的动能被吸收或阻止后转化为内能,再通过能量转化器件转化为电能的一种装置。同位素电池以结构紧凑,能量密度大,不受外界环境影响,使用寿命长等优点,在航空航天、航海、医学、微型电动机械、电子产品和电动汽车等领域得到广泛的应用[1],是一种前景广阔的新能源电池。基于同位素电池的能量转换方式,它可分为两类:直接转换式和间接转换式。更具体的讲,主要包括9种:直接充电式同位素电池、辐射伏特效应同位素电池、温差式同位素电池、荧光体光电式同位素电池、热致光电式同位素电池、气体电离式同位素电池、热机转换同位素电池、电磁辐射能量转换同位素电池和热离子发射式同位素电池[2]。放射性同位素热源是同位素电池的核心材料,能量转换材料是同位素电池的主要材料。下面以直接充电式、温差式和辐射伏特效应同位素电池三种重要的同位素电池为例对同位素电池的放射性同位素热源和能量转换材料分别进行详细的介绍。
1 同位素电池材料
1.1 放射性同位素热源
根据放射性同位素的衰变特性,大致将其分成α源、β源和γ源三种,其中适合作为同位素电池放射热源的有十几种。包括60Co,90Sr,137Cs,144Ce,147Pm,170Tm,210 Po,238 Pu,242Cm,244Cm等[3]。表1列出了常用的放射性同位素热源的参数比较(表1)。
不同类型的同位素电池中放射性同位素热源所起的作用不尽相同,所用放射性同位素热源也不尽相同。
直接充电式同位素电池是通过直接收集放射性同位素热源发射出的载能粒子,将载能粒子的能量转化成电能的一种装置。直接充电式同位素电池是一种高压型同位素电池,其开路电压为千伏级。由于α粒子会发射出大量的次级电子,这类电池一般选用纯β源或具有弱γ、X 射线的β源。常见的β源包括3H、63Ni、90Sr和147Pm。高纯度的63Ni、90Sr、147Pm价格昂贵且在国内难以获得,氚(3H)是目前已知的β热源中最易获取、最适合工业化的候选材料。
温差式同位素电池利用同位素放射源产生的热能来实现能量转换。238Pu衰变产生的是α粒子,放射性防护要求很低,作为同位素热源体积可以做得很小,是温差式同位素电池放射性同位素热源的研究热点,其半衰期为87.7年,五年内热功率值仅下降4%。美国和前苏联的原型温差式同位素电池使用的是210Po,而后主要用于反应堆动力的发展。我国最早的温差式同位素电池也是采用的210Po放射热源,其输出电功率1.4 W,产生热能为35.5W[5]。
辐射伏特效应同位素电池是直接利用放射性同位素衰变时放出的α或β粒子轰击半导体材料产生出大量电子空穴对,在半导体元件内电场的作用下实现分离,输出电流。63Ni能量密度高,半衰期长达100 年,释放出的β粒子最大能量仅有67 keV,基本不会损伤器件,成为目前最受关注的β射线辐射伏特效应同位素电池放射性同位素热源。此外,90Sr和90Y衰变时发射的β粒子在这类电池中应用较多[6]。氚的能量密度可以达到1000 mW・h/g,比高能锂离子电池能量密度高出4个数量级;并且氚电池无毒,低污染,又具有良好的生物兼容性,比现有的锂离子电池等更绿色环保,因此氚同位素伏特效应电池应用前景广阔。中国科学院苏州纳米技术与纳米仿生研究所[7,8]公开的辐射伏特效应同位素电池以氚作为同位素热源。
1.2 能量转换材料
不同类型的同位素电池的发电机制不同,所用能量转换材料也不尽相同。
直接充电式同位素电池正极发射电子,负极接收电子,两个电极均选用金属。铜具有良好的导电、导热性能和机械性能,可作为直接充电式同位素电池的收集材料。南华大学设计了以63Ni为能量来源、铜为收集极的直接充电式核电池,能量转换效率为9.42%[9]。
温差式同位素电池是利用能量转换材料的赛贝克效应将放射性同位素热源产生的热能转换成电能,其采用的能量转换材料为温差热电材料。20世纪30年代,随着半导体物理的发展,科学家们发现半导体材料的赛贝克系数可高于100μV/K,半导体热电材料成为热电材料的研究热点。其中最重要的温差式同位素电池能量转换温差热电材料包括Bi2Te3/Sb2Te3、PbTe、SiGe等固溶体合金[10]。Bi2Te3/Sb2Te3适用于低温[11]。PbTe适用于400~800 K。SiGe合金主要适用于700 K以上的高温[12],在1200 K时,无量纲的温差电优值ZT≈1,是当前航天器温差式同位素电池主要的热电材料[13-14]。美国自1961年起在近30 项空间任务中采用了温差式同位素电池作为电源。这些温差式同位素温差电池的质量从几千克到几十千克不等,输出功率范围从几瓦级到几百瓦级,最高热电转换效率接近7%,最长工作寿命超过30年[15]。表2列出了美国典型的空间应用的温差式同位素电池的温差热电材料和性能数据。
辐射伏特效应同位素电池能量转换材料主要分为两类:PN结型和非PN结型。截至目前,关于辐射伏特效应同位素电池的研究大多以PN结型能量转换材料为主。PN结型能量转换材料又分为单晶硅材料和非单晶硅材料两种。单晶硅是最早也是最成熟的半导体材料,它已广泛应用于辐射伏特效应同位素电池能量转换材料的研究当中。但是硅材料禁带宽度小,制成的PN结漏电流较大,使得电池的能量转换效率较低。碳化硅作为第三代半导体,不仅具有优异的温度特性和抗辐射特性,而且禁带宽度大,制成的PN结漏电流很低,可以得到比硅基辐射伏特效应同位素电池更高的开路电压和能量转换效率,成为目前备受瞩目的同位素电池应用材料。Chandrashekhar课题组制作了SiC材料PN结型器件,利用63Ni为放射性热源,获得了能量转换效率约为6% [16]。Moham adian[17]对GaN进行研究,Deus[18]对AlGaAs进行研究,均取得了一定的成果,这些材料在能量转换效率方面较传统的单晶硅更具优势,但受限于目前材料的制作难度有待进一步的深入。非PN结型辐射伏特效应同位素电池能量转换材料也受到了学者们的广泛关注。西安电子科技大学申请的专利[19]中提出了基于SiC的肖特基结式辐射伏特效应同位素电池,如(图1)所示。
Liu等[20]利用金属Pt和Sc的接触势差,以无定形硅为绝缘介质,得到Voc=0.16 V,Jsc=5.3 nA/cm2,Pmax=0.26 nW/cm 2的辐射伏特效应同位素电池。(图2)给出了目前已开展研究的辐射伏特效应同位素电池能量转换材料类型。目前,国内辐射伏特效应放射性同位素电池只有大连理工大学、西安电子科技大学、厦门大学、西北工业大学等少数几所高校在进行研究。
2 结语
本文就目前同位素电池的放射性同位素热源和能量转换材料做了总结归纳,旨在希望能够对从事同位素电池相关研究领域人员有所帮助,作为参考。相信随着新型材料的发展,同位素电池性能将大幅提升,在不久的将来,同位素电池在航空、医学和民用等领域发挥更大的作用。
注:作者韩建华对本文所作贡献与第一作者相同,因篇幅所限,将其列为第二作者。
参考文献
[1] 郝少昌,卢振明,符晓铭,等.核电池材料及核电池的应用[J].原子核物理评论,2006,3(3):353-358.
[2] 王铁山,张保国.同位素电池发电机制的研究与发展[J].同位素,1996(1).
[3] 蔡善钰.空间同位素发电体系的应用现状与展望[J].核科学与工程,1994(4).
[4] 孙树正.放射源的制备与应用[M].北京:原子能出版社,1992:338-345.
[5] 蔡善钰,何舜尧.空间放射性同位素电池发展回顾和新世纪应用前景[J].核科学与工程,2004(2).
[6] 王铁山,张保国.放射性同位素衰变能发电机制的研究与探索[J].核技术,1994(9).
[7] 一种PIN型核电池及其制备方法:中国, 101527175 A[D].
[8] 一种PN型核电池及其制备方法:中国, 101527176A[D].
[9] 欧频,周剑良,左国平,等.直接充电式核电池能量转换效率提高研究[J].核技术,2011,34(11):872-876
[10] 焦正宽,汪壮兵.热电材料新进展[J].功能材料,2002,33(2):115-119.
[11] Yang J,Aizawa T,Yamamoto A.Thermoelectric properties of p-type(Bi2Te3)x(Sb2Te3)1?x prepared via bulk mechanical alloying and hot pressing.J.Alloys Comp,2000(309):225-228.
[12] 张同俊,彭江英,杨君友,等.热电功能材料及其在发电和制冷方面的应用前景[J].材料导报,2000,16(5):11-13.
[13] 姜洪义,王华文,任卫.SiGe热电材料的发展与展望[J].材料导报,2007,21(7):119-123.
[14] 徐亚东,徐桂英,葛昌纯.SiGe系热电材料的研究动态[J].材料导报,2007,21(5):102-106.
[15] 郑海山,赵国铭.放射性同位素温差电池的空间应用及前景分析[J].电源技术,2013,37(7):1278-1280.
[16] Chandr ashekhar M V S,T homas CI,Li H,et al.Demonst ration of a 4H SiC betavoltaic cell[J].Applied physics letters,2006(88):033506.
[17] Mohamadian M,Feghhi SAH,Afariadeh H.Conceptual design of GaN betavoltaic battery using in cardiac pacemaker[C]//Proceedings of 13th International Conference on Emerging of Nuclear Energy Systems( ICENES),Istanbul,Turkey,2007.
[18] Deus S.Tritium-powered betavoltaic cells based on amorphous silicon[C]//proceedings of 28th PVSEC,USA:IEEE,2000,1246- 1249.
[19] 微型核电池:中国,101325093A[P].
[20] Liu B,Chen K P,K herani N P,et al.Betavoltaics using scandium tritide and contact potential difference[J].Applied physics letters,2008(92):083511.
[21] 罗顺忠,王关全,张华明.辐射伏特效应同位素电池研究进展[J].同位素,2011,24(1):1-11.