首页 > 范文大全 > 正文

精彩问题来自不断的探索

开篇:润墨网以专业的文秘视角,为您筛选了一篇精彩问题来自不断的探索范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:笔者对一道普通的考题,首先通过尝试改变考题的情境、条件、图形等,精彩地展示了一题多变后的好题;其次,通过对结论作发散性思考,创作了若干个妙题;最后,对题设、结论作了进一步的延伸、发散、类比,奉献了精彩的发散性试题.

关键词:探索;精彩;问题;数学;题设;结论

笔者不久前在高中交流试卷上看到一题,求证:在边长为a的正三角形中平分面积的最短线段长为a.

证明如图1所示,边长为a的正三角形ABC的面积SABC=a2.

图1

设MN平分ABC的面积,设AM=x,AN=y,则SAMN=xysin60°=xy. 又SAMN=SABC,所以xy=×a2. 所以xy=a2. 所以MN2=x2+y2-2xycos60°=x2+y2-xy≥2xy-xy=xy=a2,当且仅当x=y=a时取等号,此时MNmin=a.

此题优美,经过不断的探索,得到了如下几个精彩的问题:

探索1在上题中,M,N分别在AB,AC上移动,若改在其他边上,结论有无影响?(由正三角形的对称性知,结论不变)

探索2将(直)线段改为折线段,有何结论?

结论一定存在平分此三角形的折线段.

例1已知:如图2所示,D,E,F分别为BC,AB,AC之中点, ABC是边长为a的正三角形.

图2

求证:S四边形AEDF=SABC .

证明因为D,E分别为BC,AB之中点,所以DE∥AC且DE=AC. 所以SBDE=SABC .

同理可证SCDF=SABC .

所以S四边形AEDF=SABC-SBDE-SCDF=SABC-SABC-SABC=SABC .

评注此时折线段EDF平分此三角形的面积,且ED+DF=+=a>a .

例2如图3所示,O为BC边中线AD之中点,连结OB,OC, ABC是边长为a的正三角形.

求证:SBOC=SABC .

图3

证明因为ABC为正三角形,AD为中线, 所以AD为BC边上的高,又O为AD之中点, 所以OD=AD.

所以SBOC=BC•OD=BC•AD=•BC?摇•AD?摇=SABC .

评注此时折线段BOC平分此三角形的面积,且OD=AD=asin60°=a,BO+OC=2BO=2•=a>a>a.

探索3平分此三角形的折线段之和是否一定大于a?

结论存在平分此三角形且折线段之和小于a的折线段.

例3如图4,ABC是边长为a的正三角形,AD为BC边上的中线,G为AD上一点,AE=AG=AF=x,且折线段EGF平分ABC的面积.

求证:EG+GF

图4

证明由已知得:2×x2sin30°=SABC,SΑΒC=•a2,所以x2=a2.

所以EG+GF=2•GE=2•=2=2•=a≈0.681 3a

探索4在图4中,折线段为2节,若不断增加节数,有何结论?

结论折线段之和在不断减小,且存在最短的曲线段.

图5

证明在图5中,设AE=AG=AH=AF=x,3•x2sin=•a2,所以x2=a2•.

所以EG+GH+HF=3EG=3=3=3=a≈0.676 8a

同法可证:当节数为4、5、6…时,折线段之和随节数的增大而不断减小. 当n∞时,此时的折线段就变成了光滑的弧线段. 设AE=AF=r,S扇AEF=r2×=SABC . 因为SABC=a2,所以r=. 所以l=αr=•a=a≈0.673 4a

图6

评注此时的弧线段EF是平分此三角形面积的所有曲线段中最短的.

探索5若将探求最短曲线段改为探求最长曲线段,有何结论?

结论存在平分此三角形面积的最长(直)线段.

证明从几何角度看,取MNmin=a,记为M0N0,此时M0N0∥BC且AM0=AN0=a=M0N0.

在AB上取异于M0的一点M1,作M0N1∥M1N0,

且交AC于点N1,则SAM0N0=SAM1N1. 同法可作出M1N2∥M2N1,则SAM1N1=SAM2N2 .

连结BN0,只要M0E∥BN0,且交AC于点E,则SAM0N0=SAM1N1=SAM2N2=…=SAMnNn=…=SABE .

(考虑到对称性,亦可连结CM0,只要N0F∥CM0,且交AB于点F,则CF即为所求)

观察图形(图略)可猜测,BE>…>MnNn>…>M1N1>M0N0.

下面只证M1N1>M0N0,其余之证明可仿照进行. 过M0作M0J∥AC且交M1N0于J.

在M0M1J中,∠M0JM1=∠AN0J>∠AN0M0=60°,∠M0M1J=∠AM0N1

所以M0M1>M0J.

由于M0N1∥M1N0,且M0J∥AC,所以M0J=N0N1.

所以M0M1>N0N1.

为方便计,设M0M1=t1>0,N0N1=t2>0,显然t1>t2>0.

在AM1N1中,M1N12=a+t12+ a-t22-2×a+t1•a-t2cos60°=a2+at1+t+ a2-at2+t-a2+at2-•at1+t1t2=a2+at1-at2+(t+t+t1t2)=a2+a(t1-t2)+(t+t+t1t2)>a2=a2=M0N02.

所以M1N1>M0N0.

有兴趣的同学可进一步探索有无平分此三角形面积的最长折线段.

探索6将原题中“平分面积”改为“平分周长”,有何结论?

结论1从三角形顶点出发的平分周长的线段交于一点J.

例4已知:如图7所示,AD,BE,CF分别平分ABC的周长,AB=c,BC=a,CA=b,记p=(a+b+c).

求证:AD,BE,CF交于一点J.

图7

证明因为AD平分ABC的周长,所以c+BD=b+CD=p.

所以BD=p-c,CD=p-b.

同法可得AF=p-b,BF=p-a,AE=p-c,CE=p-a .

因为••=••=1,由塞瓦定理得,AD,BE,CF交于一点J.

结论2过三角形三边中点且平分周长的线段交于一点K.

例5已知:如图8所示,在ABC中,AB=c,AC=b,BC=a,点L,M,N分别为AB,BC,CA三边的中点,且MS,LR,NT分别平分ABC的周长,MS与LN交于点D,LR与MN交于点E,NT与LM交于点F.

求证:MS,LR,NT交于一点K.

图8

证明因为L,M分别为AB,BC之中点 ,所以BM=BC=a,LB=•AB=c.

又MS平分ABC的周长,所以SL+LB+BM=(a+b+c).

所以LS=b.

同理可得TM=,MR=. 而==,所以LD==,DN=LN-LD=a-==.

所以==.

同理可得=,=.

而••=••=1,由塞瓦定理得MS,LR,NT交于一点K.

结论3J,K,G共线(G为ABC之重心).

利用仿射几何的仿射不变性可以证明此结论.

结论4由此联想到O,G,H是否共线?答案是肯定的.

例6已知:如图9所示,O,G,H分别为ABC的外心、重心、垂心,AM为BC边上之中线,AD为BC边上之高线.

求证:O,G,H三点共线.

证明设OH与AM交于点Q,连结OM,延长BO交O(O为ABC的外接圆)于点E,连结CE,由中位线定理可知OM∥CE,且OM=CE.

由BE为直径知∠BCE=90°. 所以CEBC,ADBC(高的定义).

所以CE∥AD. 而CE∥OM,所以OM∥AD. 所以OMQ∽HAQ.

所以=.

连结CH,EA,因为CHAB(垂心定义),?摇EAAB(因为∠EAB=90°),所以CH∥EA.?摇

所以四边形AECH为平行四边形.

所以AH=CE.

而AD∥CE(已证),所以===.

又=(G为重心),所以Q与G重合.

所以O,G,H三点共线.

探索是一种高层次的学习,是无止境的,许多精彩问题就是在不断的探索当中诞生的,尽管它们不一定被解决,但是它们的出现远比解决一个问题还重要.

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文