首页 > 范文大全 > 正文

基于人工神经网络的过闸流量软测量研究

开篇:润墨网以专业的文秘视角,为您筛选了一篇基于人工神经网络的过闸流量软测量研究范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:由于过闸流量与其影响因素(上游水位、闸门开度等)存在着复杂的非线性关系,给水流量的精确测量带来了困难。本文利用人

>> 基于人工神经网络过闸流量模型在南水北调中线工程的应用 基于人工神经网络的优化配置研究 基于BP神经网络的彩色温度软测量 基于小波神经网络的网络流量预测研究 基于改进小波神经网络的网络流量预测研究 基于混沌神经网络的区域物流量预测 基于BP神经网络的铁路客流量预测研究 基于人工神经网络的煤炭需求预测 基于人工神经网络的PPI预测模型 基于人工神经网络的自适应距离保护 基于人工神经网络的故障诊断 基于人工神经网络的化工安全评价 基于人工神经网络的人口预测 基于人工神经网络的图像识别 基于人工神经网络的车牌识别探究 基于人工神经网络的信息处理 基于人工神经网络的巨大儿预测的研究 基于BP人工神经网络的土壤含水量预测模型的研究 基于BP人工神经网络的知识管理战略选择研究 基于人工神经网络的水泵故障诊断技术研究 常见问题解答 当前所在位置:

关键词:BP网络;软测量;过闸流量;MATLAB神经网络工具箱

DOI: 10.3969/j.issn.1005-5517.2013.10.011

引言

通过闸门的水流量是一个非常重要的参数。只有获得准确的流量值,才能实现对水资源的优化配置。目前对于过闸水流量的测量已形成了几种方法:流速仪法、水力学公式法以及曲线法[1,2]。其中,被广泛运用与现场测流中的方法是流速仪法,它也是流量测量中最重要的方法。流速仪法是通过实测断面上的流速和水道断面积来确定流量的方法。测量时先在断面上布设测速垂线和测速点,再将流速仪放到测速点处测速,用分割法计算断面面积,推算出流量。虽然这种测流方法是目前的主导方法,但却存在着一些天生的缺陷:一是很难确定合适的测速垂线及测点,这是由于河道断面形状的不规则以及流速场分布情况复杂等原因造成的;二是实时性不高,测量时间比较长,从而导致管理部门不能及时了解过闸流量,耽误启闭闸门的最佳时机;三是需要的硬件资源比较多,因此大大增加了测流成本。鉴于此,研究一种新型的即简单、操作方便实时性又高,并且精度满足要求的测流方法已成为目前的迫切需求。而本文采用的BP网络软测量技术正好解决了以上诸多问题。

BP神经网络软测量模型

隐含层神经元数的确定

隐含层神经元数的选择在理论上并没有一个明确的规定。因此,选择合适的神经元数就显得十分麻烦。如果神经元太少,则网络不能很好地学习,需要的训练次数也多,训练的精度也不高。反而言之,如果隐含层神经元数选的太多,虽然功能会越大,但是循环次数也就是训练时间也会随之增加。另外可能还会出现其他的问题,如导致不协调的拟合。一般的选择原则是:在能够解决问题的前提下,再加上一到两个神经元以加快误差的下降速度即可[7]。

这里,我们通过对不同神经元数进行训练对比,以及通过简单的交叉验证法确定隐含层的神经元数为15个。基于BP网络的过闸流量软测量模型如图1所示。

数据样本的选取及处理

所用的人工神经网络的训练与测试集样本来源于碧口水电厂右泄工作门2001年水文历史数据。从中选取典型的60组数据,其中前40组作为训练样本,后20组作为测试样本。限于篇幅只列出部分数据,如表1所示。

由于输入样本各参数的集中取值范围不同,参数大小不一,为了使各类参数所起的作用大致相同,必须对输入数据进行标准化,把输入数据都规一到[0,1]闭区域内[8]。因此,我们对表1的数据做如下处理:H*G=HG/10;H*UP=HUP/1000;Q*=Q/Qmax。

运用MATLAB神经网络工具箱对网络进行训练与测试

在运用MATLAB神经网络工具箱对网络进行训练之前,要注意两方面问题。一是初始权值的选择,再个就是学习速率的选取。

由于系统是非线性的,初始值对于学习是否达到局部最小、是否能够收敛以及训练时间的长短的关系很大。一般选取初始权值为(-1,1)之间的随机数。在MATLAB工具箱中可采用函数initnw.m初始化隐含层权值。学习速率决定每一次循环训练中所产生的权值变化量。若学习速率过大可能导致系统的不稳定;但学习速率过小会导致训练时间较长,收敛速度很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于最小误差值。所以在一般情况下,倾向于选取较小的学习速率以保证系统的稳定性。学习速率的选取范围在0.01到0.8之间。综合考虑一下,本系统选取学习速率为0.1。BP网络训练程序如下所示[9]:

%定义输入向量和目标向量

P=[0.5 0.6 0.8 ??;0.7082 0.7081 0.7079 ??];

T=[0.3744 0.4533 0.3735 0.648??];

%创建BP网络和定义训练函数及参数

net=newcf( minmax(P),[15,1],{‘lo gsig’,‘purelin’},‘traingd’);

net=initnw(net,1);

net.trainParam.epochs=5000;

net.trainParam.lr=0.1;

net.trainParam.goal=0.00001;

%训练神经网络

[net,tr]=train(net,P,T);

待网络训练好后,利用选定的20组测试样本对其进行测试,以测量其泛化能力。测试结果如图2和图3所示。

图2为真实流量值与通过BP网络软测量模型的预测值之间的拟合曲线,方框代表预测值,圆点代表真实值。

图3为BP网络模型过闸流量估计误差曲线,从图中可以看出网络估计误差在5%以内,与流量真值符合良好,反映了软测量模型良好的测量能力。通过改变网络结构、神经元的激活函数、学习算法,进一步增强神经网络对模糊数据的识别能力和容错性,从而可进一步提高模型精度。

本文提出了一个基于两层BP网络的过闸流量软测量模型,训练与测试结果表明:该网络对过闸流量有很好的预测性,误差在5%以内。而一般传统的流速仪测流的误差也为5%,因此该模型能满足工程测量的需要。另外,预测值与流量真值具有较好的一致性,也充分显示了人工神经网络解决工程问题的适用性。因此,可以通过基于人工神经网络的软测量模型来解决过闸流量与各影响因素之间的复杂非线性关系,为过闸流量的测量提供了一种可供选择的有效手段。